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Abstract

In an intertemporal setting in which individual uncertainty is resolved over time, advance-purchase dis-
counts can serve to price discriminate between consumers with different expected valuations for the product.
Consumers with a high expected valuation purchase the product before learning their actual valuation at the
offered advance-purchase discount; consumers with a low expected valuation will wait and purchase the
good at the regular price only in the event where their realized valuation is high. We characterize the profit-
maximizing pricing strategy of the monopolist. Furthermore, adopting a mechanism design perspective,
we provide a necessary and sufficient condition under which advance-purchase discounts implement the
monopolist’s optimal mechanism.
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1. Introduction

Advance-purchase discounts (introductory offers, early-booker discounts) have frequently
been used in the sale of products such as holiday packages, hotel rooms, rental car hires, airline
tickets, and conferences. While one may argue that, in these examples, a firm’s pricing policy
is affected by limited capacity, capacity constraints are largely absent in the digital economy
where the use of advance-purchase discounts is also common. For example, amazon.com offers
large discounts for pre-release orders of DVDs. Similarly, Apple’s iTunes offers exclusive bonus
tracks for pre-release orders of music albums. A theory of advance-purchase discounts that is
applicable to the digital economy should therefore not rely on limited capacity. In this paper, we
provide such a theory, based on price discrimination.

The starting point of our theory is the observation that consumers are likely to face uncertainty
about their valuation when the time of consumption is far ahead in the future. Consider the
following two-period problem of a monopolist selling a product with a fixed consumption or
delivery date and committing to a price path. Consumers can buy either at the early date (before
individual uncertainty is resolved) or at the late date (after individual uncertainty is resolved).
At the early date, consumers only know their expected valuation. Suppose that all consumers
have the same expected valuation (but differ in their ex-post valuations). By selling the good at
the early date only (“advance selling”), the monopolist can extract all of the expected consumer
surplus (namely, by charging an advance-selling price equal to consumers’ common expected
valuation). Such an advance-selling policy is clearly profit-maximizing, provided it is ex-post
efficient to sell to all consumers. However, if the ex-post valuation of some consumers is lower
than the unit cost of producing the good, it might be better for the monopolist to sell the good
at the late date only (“spot selling”). While spot selling does not allow the monopolist to extract
all of the consumer surplus (because of heterogeneity in ex-post valuations), it yields an ex-
post efficient allocation conditional on a given level of output. As shown by Courty [3], the
optimal pricing policy of the monopolist consists in advance selling if the unit cost of production
is below a certain threshold and in spot selling otherwise. Advance-purchase discounts (where
some consumers purchase at the early date and others at the late date) cannot be optimal in this
simple setting because consumers are ex-ante identical.

In our model, consumers differ in their expected valuations. If the monopolist offers an
advance-purchase discount (i.e., an increasing price path), consumers face a trade-off: they can
either buy early at a discount or else wait and make their purchasing decision dependent on the
actual realization of their valuation. Consumers with a high expected valuation will optimally
purchase the good at the early date whereas consumers with a low expected valuation will buy
the good at the late date (provided their ex-post valuation exceeds the price of the good at that
date). That is, by offering an advance-purchase discount, the monopolist effectively discrimi-
nates between consumers on the basis of their expected valuations.3 We provide a necessary and
sufficient condition under which the monopolist’s optimal intertemporal pricing policy involves
such an advance-purchase discount.

In the next section, we present our baseline model where the (binary) distribution of “shocks”
to consumers’ valuations is the same for all consumers, independently of their expected valu-
ations. That is, we focus on consumer heterogeneity in expected valuations, abstracting from

3 For this discrimination to be effective, secondary markets should be closed down by the monopolist unless they can
operate only at high costs for consumers. For instance, if the contract is personalized, a secondary market cannot be
active.
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heterogeneity in the degree of uncertainty. In Section 3, we allow the monopolist to choose
amongst simple pricing policies: advance selling (where all sales occur at the early date), spot
selling (where all sales occur at the later date), and advance-purchase discounts (where some
sales occur at the early date and some at the later date). We show that – even though all consumers
face the same type of demand uncertainty – the monopolist may optimally use advance-purchase
discounts. We provide a necessary and sufficient condition for this to be the case.

In Section 4, we consider an extended model where the shock to consumers’ valuations is
a function of the expected valuation. This allows us to analyze heterogeneity in the degree
of uncertainty, while retaining the assumption that the distribution of consumer types is one-
dimensional. In addition, we extend the model by introducing gradual resolution of uncertainty:
consumers receive signals about their ex-post valuations at some intermediate date(s). This al-
lows us to analyze whether the monopolist may want to further discriminate between consumers
based on such signals. Adopting a mechanism design approach, we show that the optimal mech-
anism can always be implemented by a simple pricing policy at which sales are made only
at an early date or at a late date (or both) but not at intermediate dates. We provide a neces-
sary and sufficient condition for the optimality of each one of the three simple pricing policies
(advance-purchase discounts, advance selling, and spot selling). In particular, advance-purchase
discounts are optimal if consumer heterogeneity is sufficiently large; in that sense, the optimality
of advance-purchase discounts emerges as the “normal” case.

Related literature. Our paper contributes to the literature on intertemporal pricing. Previous
work has identified a large class of economic environments in which, absent capacity costs, a
monopolist will optimally sell all units at the same price (Riley and Zeckhauser [15]; Wilson [16];
Courty [3]). Advance-purchase discounts emerge as the optimal pricing policy in a number of
economic environments where capacity is scarce and the aggregate level of demand is uncertain
(Gale and Holmes [10,11], Dana [6–9]). Our paper is the first to show the optimality of advance-
purchase discounts in a setting in which neither scarce capacity nor aggregate demand uncertainty
play any role.4

Our paper is closely related to the analysis of refund contracts by Courty and Li [4]. However,
the techniques of Courty and Li do not apply, in particular, because the distribution of shocks to
consumer preferences is continuous in their model but discrete in ours. In Courty and Li, before
the individual uncertainty is resolved, consumers choose from a menu of contracts which may
include fixed-price contracts and contracts with full or partial refunds. If a consumer has chosen
a contract with full or partial refund, he has the option of returning the product for refund after
learning his actual valuation. Courty and Li show that the optimal menu of contracts involves both
full and partial refund contracts.5 In this paper, we focus instead on simple intertemporal pricing
policies that are relevant in many real-world markets. In Courty and Li’s setting, these simple
intertemporal pricing policies correspond to menus that do no contain partial refund contracts. In
real-world applications, simple pricing policies have an important advantage over contracts with
partial or full refunds: a transaction takes place at one date only (the date of purchase) rather

4 In independent recent work, Möller and Watanabe [14] consider a model with two consumer types in which the seller
can ex ante commit to her capacity. They show that advance-purchase discounts can be the preferred pricing policy if
capacity costs are zero.

5 Such refund contracts are, in effect, equivalent to option contracts, where a specified payment at the early date gives
the consumer the right to exercise his option to buy the product at a predetermined price at the later date.
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than at two dates (the date of contracting and the date at which the good is returned).6 We show
that these simple pricing policies implement the optimal mechanism in a setting in which the
monopolist can pick any, possibly stochastic, mechanism. Hence, the monopolist does not have
an incentive in offering more sophisticated contracts even if they were available. However, as we
discuss in the paper, this last result does rely on the assumed binary nature of information. In
contrast to Courty and Li [4], we also allow for gradual resolution of uncertainty and show that
the monopolist optimally refrains from using noisy information at some intermediate date.

Our paper is also related to the literature on monopoly bundling (see, e.g., McAfee, McMillan,
and Whinston [13]) as one can interpret the consumption of the same good in different states as
amounting to consuming different goods. By purchasing the good at the early date (before the
preference shock is realized), a consumer effectively buys a consumption bundle, namely the
right to consume the good in all states of nature. Advance-purchase discounts are, therefore, akin
to mixed bundling.

Relating our paper to the literature on information acquisition (see, e.g., Cremer and
Khalil [5], Lewis and Sappington [12], and, in particular, Bar-Isaac, Caruana and Cunat [2]), the
price difference between the late and the early date can be interpreted as the information acquisi-
tion cost that a consumer has to incur so as to learn his willingness-to-pay. Hence, in our setting,
the information acquisition cost is endogenous and controlled by the monopolist. In situations
in which the monopolist optimally chooses advance-purchase discounts, the profit-maximizing
information acquisition cost takes a strictly positive (and finite) value.

2. A simple model

Consider a monopolist (“she”) who can choose to sell a product at two different dates, t = 0
and t = 1, at prices p0 ∈ R+ ∪{∞} and p1 ∈ R+ ∪{∞}, respectively, and, prior to t = 0, publicly
commits to a price path (p0,p1). We write pt = ∞ if she does not make the product available at
date t . The monopolist can produce any quantity of the good at constant marginal cost c � 0.

There is a unit mass of consumers with unit demand. A consumer is described by his type r ,
which denotes the expected valuation of the good. The consumer’s ex-post valuation of the
good is a random variable v(r) with conditional expectation E[v(r)|r] = r . The random vari-
able v(r) can take one of two values, a high value vH (r) with probability λH and a low value
vL(r) < vH (r) with the remaining probability λL = 1 − λH .7 We assume vz(r) = r + αz for
z ∈ {L,H }. That is, we assume here that the “shock” to the consumer’s valuation, αz, is indepen-
dent of the consumer’s type r , where, by construction, the expected value of the shock is zero,
λLαL + λH αH = 0, and αH > 0 > αL. An alternative and equivalent interpretation is that the
consumer derives a non-random utility from consumption of the good but that the value of the
next-best alternative (the consumer’s outside option) is uncertain. (Think of the chance of being
invited to a party as an alternative to a concert for which you consider buying a ticket.)

We assume that the realization of the random variable is independent across consumers. That
is, there is no aggregate uncertainty. At t = 0, each consumer privately learns his own type r . At

6 Another advantage is that consumers contract sequentially under advance-purchase discounts. Thus, consumers who
were initially not aware of the good can still purchase the good at a later date. Our formal analysis can be extended to
allow for this possibility.

7 While the binary nature of uncertainty may feel special, consumers often face uncertainty of the yes/no-type in the
real world. For example, the utility I get from attending a concert may greatly depend on whether or not my date shows
up.



V. Nocke et al. / Journal of Economic Theory 146 (2011) 141–162 145
t = 1, each consumer privately learns the realization of his valuation v(r). Consumption takes
place after t = 1. If a consumer with valuation v purchases the good (at either date) at price p,
his (ex post) surplus from consuming the good is v − p. If he does not purchase the good, the
surplus is zero.

Consumers differ in their expected valuation r . The cumulative distribution function over r is
denoted by F : R+ → [0,1]. We assume that F is continuous on R+ and has a density f which
takes values f (r) > 0 for all r ∈ (r, r) and f (r) = 0 for all r /∈ [r, r], and is continuous on [r, r].
Note that we allow for f (r) and f (r) to be zero or strictly positive. The upper bound of the
support may be finite or infinite: r ∈ (r,∞) ∪ {∞}. To avoid negative realizations, we assume
that r � −αL. Furthermore, the distribution of r has a finite mean:

∫ r

r
rf (r)dr < ∞.

Throughout this paper we make the monotone hazard rate assumption with respect to F .

Assumption. The hazard rate f (·)/(1 − F(·)) is strictly increasing in r on the support of F .

The monotone hazard rate assumption is satisfied if and only if 1 − F is strictly log-concave
and holds for a variety of parametric distribution functions (see e.g. Bagnoli and Bergstrom [1]).
Taking limits of the inverse hazard rate, we define

φ ≡ lim
r↓r

1 − F(r)

f (r)
and φ ≡ lim

r↑r

1 − F(r)

f (r)
.

Under the monotone hazard rate assumption, φ ∈ R+ ∪ {∞} and φ ∈ R+ with 0 � φ < φ. Note

that f (r) > 0 implies φ = 0. To make the standard monopoly pricing problem at date t = 0 well
defined and non-trivial, we assume r > c + φ.

3. Optimal intertemporal price discrimination

The strategy of the monopolist is given by the price path (p0,p1). Each price path is an
element of one of three “classes” of simple pricing policies. First, an advance-purchase discount
(APD) policy is defined by prices p0 < p1 that induce strictly positive demand at both dates.
Second, an advance-selling policy is defined by an increasing price path (p0,p1) with p0 < p1
that induces positive demand at t = 0 only. This advance-selling policy is payoff-equivalent to
(p0,∞), that is, the monopolist sells the product at t = 0 only. Third, a spot-selling policy is
defined by a decreasing price path, (p0,p1) with p0 � p1. A decreasing price path necessarily
induces positive demand at t = 1 only. This spot-selling policy is payoff-equivalent to (∞,p1),
that is, the monopolist sells the product at t = 1 only.

In the following, we first characterize the profit-maximizing APD policy. We then compare
this policy to the profit-maximizing advance-selling and spot-selling policies. Furthermore, we
provide a necessary and sufficient condition under which the monopolist’s optimal simple pricing
policy involves advance-purchase discounts. Finally, we briefly discuss the welfare effects of
prohibiting APD policies.

We first derive the monopolist’s optimal APD policy. Suppose that consumers face an in-
creasing price path p0 < p1. If a consumer of type r purchases the good at t = 0, his ex-
pected surplus is r − p0. Since the price at date 0 is lower than the price at date 1, a rational
consumer of type r will delay his purchasing decision until t = 1 only if he does not in-
tend to buy the good in the event when v(r) = vL(r). If r < p1 − αH , the consumer will
not buy the product even when v(r) = vH (r). If instead r � p1 − αH , the consumer will
purchase the product at t = 1 if and only if v(r) = vH (r), and so his expected surplus is



146 V. Nocke et al. / Journal of Economic Theory 146 (2011) 141–162
λH (r + αH − p1). The gain in expected surplus from delaying the purchasing decision until
t = 1 is therefore �(r) ≡ λH (r + αH − p1) − (r − p0), which is strictly decreasing in r . Let
r̃ = [p0 − λH (p1 − αH )]/(1 − λH ) denote the consumer type who is indifferent between pur-
chasing at t = 0 and delaying the purchasing decision, i.e., �(r̃) = 0. If r > r̃ , the consumer will
optimally purchase the product at t = 0; if r ∈ [p1 −αH , r̃], he will purchase at t = 1 if and only
if v(r) = vH (r); otherwise, if r < p1 − αH , he will not buy at all. Thus, demand at date 0 is
1 − F(r̃), while demand at date 1 is λH [F(r̃) − F(p1 − αH )]. The monopolist’s profit is

π(p0,p1) = (p0 − c)
(
1 − F(r̃)

)
+ λH (p1 − c)

{
F(r̃) if p1 � r + αH ,

[F(r̃) − F(p1 − αH )] otherwise.
(1)

We claim that any profit-maximizing price at date 1 satisfies p1 � r + αH . To see this, suppose
otherwise. But then the monopolist could increase her profit by raising both prices such that r̃

(and, therefore, demand in each period) remains constant.

Lemma 1. Consider the set of prices p0 and p1 such that demand at both dates is posi-
tive, i.e., p0 < p1 < min{p0 + αH , [p0 − (1 − λH )r]/λH + αH }. If ∂π(p0,p1)/∂p0 < 0, then
∂π(p′

0,p1)/∂p0 < 0 for all p′
0 � p0. That is, π is quasi-concave in its first argument.

Proof. Note first that

∂π(p0,p1)

∂p0
= 1 − F

(
p0 − λH (p1 − αH )

1 − λH

)

−
[

p0

1 − λH

− λH p1

1 − λH

− c

]
f

(
p0 − λH (p1 − αH )

1 − λH

)
. (2)

This expression is negative if and only if[
p0

1 − λH

− λH p1

1 − λH

− c

]{
f (

p0−λH (p1−αH )
1−λH

)

1 − F(
p0−λH (p1−αH )

1−λH
)

}
> 1. (3)

If ∂π(p0,p1)/∂p0 < 0, then the term in square brackets is positive and strictly increasing in p0.
The term in curly brackets is positive and, from the monotone hazard rate assumption, strictly
increasing in p0. Hence, if ∂π(p0,p1)/∂p0 < 0, then ∂π(p′

0,p1)/∂p0 < 0 for p′
0 � p0. �

The following lemma characterizes the unique candidate of the profit-maximizing APD policy
(p̂0, p̂1).

Lemma 2. If c − αH > r − φ the candidate for the profit-maximizing APD policy, (p̂0, p̂1), is
uniquely determined by

p̂1 = c + 1 − F(p̂1 − αH )

f (p̂1 − αH )
; (4)

p̂0 = c + λH

1 − F(p̂1 − αH )

f (p̂1 − αH )
+ (1 − λH )

[1 − F(
p̂0−λH (p̂1−αH )

1−λH
)

f (
p̂0−λH (p̂1−αH )

1−λH
)

]
. (5)

If c − αH � r − φ the candidate for the profit-maximizing APD policy, (p̂0, p̂1), is uniquely
determined by
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p̂1 = r + αH ; (6)

p̂0 = λH (r + αH ) + (1 − λH )

[
c + 1 − F(

p̂0−λH r
1−λH

)

f (
p̂0−λH r

1−λH
)

]
. (7)

In both cases, if the price path of the optimal pricing policy induces positive demand at each
date, (p̂0, p̂1) constitutes the optimal APD policy.

Proof. The two first-order conditions of profit maximization yield

p̂0 − c = λH (p̂1 − c) + (1 − λH )

[1 − F(
p̂0−λH (p̂1−αH )

1−λH
)

f (
p̂0−λH (p̂1−αH )

1−λH
)

]
(8)

and

p̂1 − c = (p̂0 − c)f (
p̂0−λH (p̂1−αH )

1−λH
) + (1 − λH )[F(

p̂0−λH (p̂1−αH )
1−λH

) − F(p̂1 − αH )]
λH f (

p̂0−λH (p̂1−αH )
1−λH

) + (1 − λH )f (p̂1 − αH )
. (9)

Inserting (8) into (9), and simplifying, we obtain (4). Recall that the optimal APD policy must
be such that p̂1 ∈ [r + αH , r + αH ). Note that the LHS of (4) is strictly increasing in p̂1, while
(by the monotone hazard rate assumption) the RHS is strictly decreasing in p̂1. Continuity then
implies that if p̂1 ∈ [r + αH , r + αH ), it is uniquely determined by Eq. (4). Inserting (4) into
(8) yields Eq. (5). By definition, an APD policy involves positive demand at both dates, i.e.,
r̃ = [p̂0 − λH (p̂1 − αH )]/(1 − λH ) ∈ (p̂1 − αH , r). The LHS of (5) is strictly increasing in p̂0,
while (by the monotone hazard rate assumption) the RHS is strictly decreasing in p̂0. Continu-
ity then implies that if r̃ ∈ (p̂1 − αH , r), p̂0 is uniquely determined by Eq. (5). Note also that
the monotone hazard rate assumption implies that p̂0 < p̂1. To see this, suppose otherwise that
p̂0 � p̂1. From (4) and (5), it follows that

1 − F(p̂1 − αH )

f (p̂1 − αH )
�

1 − F(
p̂0−λH (p̂1−αH )

1−λH
)

f (
p̂0−λH (p̂1−αH )

1−λH
)

.

From the monotone hazard rate assumption, p̂1 − αH � [p̂0 − λH (p̂1 − αH )]/(1 − λH ), i.e.,
p̂1 � p̂0 + αH , contradicting that p̂0 � p̂1.

The unique solution to (4) satisfies p̂1 > r + αH if and only if c − αH > r − φ. Otherwise, if
c − αH � r − φ, then p̂1 must be given by the corner solution p̂1 = r + αH . Substituting p̂1 in
(8) and rewriting yields (7). The RHS of (7) is strictly increasing in p̂0, while (by the monotone
hazard rate assumption) the RHS is strictly decreasing in p̂0 for p̂0 � λH r + (1 − λH )r . If
r̃ ∈ (r, r), continuity implies that p̂0 is uniquely determined by (7) and p̂0 < p̂1.8 �

It can easily be verified that the price path (p̂0, p̂1) induces positive demand at both dates only
if c < r − αL, i.e., only if it is efficient to sell to the highest type(s) even when v(r) = vL(r).

8 We also note that, evaluated at p̂0 = r , the RHS of (7) is greater or equal to the LHS since c −αH � r −φ. Note also
that the RHS of (7) evaluated at p̂0 = r + αH is λH [r + αH − c] + (1 − λH )[1 − F(r + αH (1 − λH ))]/f (r + αH (1 −
λH )), which is smaller than r + αH − c if and only if r + αH > c + [1 − F(r + αH (1 − λH ))]/f (r + αH (1 − λH )).
Because of the monotone hazard rate assumption, this is implied by r + αH > c + φ.
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We now turn to the characterization of the profit-maximizing advance-selling policy where,
by definition, demand at t = 1 is zero. Under such an advance-selling policy, the monopolist’s
profit can be written as

π(p0,∞) = (p0 − c)
(
1 − F( ˜̃r))

where ˜̃r = p0 denotes the consumer type who is indifferent between purchasing at t = 0 and not
purchasing at all. Accordingly, the monopolist solves a standard monopoly problem with demand
function 1 − F(p). Let pa ≡ arg maxp0 π(p0,∞) denote the profit-maximizing advance-selling
price.

Lemma 3. The profit-maximizing advance-selling price pa is uniquely determined by

pa =
{

c + 1−F(pa)
f (pa)

if c > r − φ,

r otherwise.
(10)

Proof. The first-order condition of profit maximization can be rewritten as

Ψ (p0) ≡ 1

f (p0)

∂π(p0,∞)

∂p0
= 1 − F(p0)

f (p0)
− (p0 − c) = 0.

Note that limp0↓r Ψ (p0) > 0 if and only if c > r − φ. Further, limp0↑r Ψ (p0) = φ − r + c,
which is strictly negative by assumption. By the monotone hazard rate assumption, Ψ is strictly
decreasing in p0 ∈ (r, r). Hence, pa is uniquely determined by Ψ (pa) = 0 if c > r − φ, and
pa = r otherwise. �

Intuitively, the monopolist will prefer APD over advance selling (i) if marginal cost is high
(since, in this case, it is inefficient to sell to low types when z = L) and (ii) if consumers face a
large negative shock, i.e., −αL is large (since, in this case, it becomes attractive for the monopo-
list to sell to low types only when z = H ). The following lemma confirms this intuition.

Lemma 4. There exists an APD policy that yields strictly larger profits to the monopolist than
the optimal advance-selling policy (pa,∞) if and only if r − φ < c − αL.

Proof. Suppose first that c > r − φ, so that pa > r . In this case, the profit from advance selling
is equal to π(pa,pa + αH ). We show that limp1↑pa+αH

[∂π(pa,p1)/∂p1] < 0: starting from
p0 = pa and p1 = pa + αH (where demand at t = 1 is zero), the monopolist can increase her
profit by marginally reducing her price at date 1 and thereby making sales at date 1.

lim
p1↑pa+σ

∂π(pa,p1)

∂p1

= d

dp1

[(
pa − c

)[
1 − F

(
pa − λH (p1 − αH )

1 − λH

)]]∣∣∣∣
p1=pa+αH

+ d

dp1

[
λH (p1 − c)

[
F

(
pa − λH (p1 − αH )

1 − λH

)
− F(p1 − αH )

]]∣∣∣∣
p1=pa+αH

= (
pa − c

) λH

1 − λH

f
(
pa

) + λH

(
pa + αH − c

)[− λH

1 − λH

f
(
pa

) − f
(
pa

)]

= −αH

λH
f

(
pa

)
< 0.
1 − λH
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Suppose now that c � r − φ, so that pa = r . Again, the profit from advance selling is equal to
π(pa,pa + αH ), but now with pa = r . We show that limp0↓r [∂π(p0, r + αH )/∂p0] > 0 if and
only if c + αH λH /(1 − λH ) > r − φ: starting from p0 = r and p1 = r + αH (where demand
at t = 1 is zero), by marginally increasing her price at date 0 (and thereby making sales at both
dates), the monopolist can increase her profit if and only if c + αH > r − φ. To see the “if” part,
note that

lim
p0↓r

∂π(p0, r + αH )

∂p0
= 1 −

[
r − c − λH

1 − λH

αH

]
f (r),

which is positive if and only if c − αL > r − φ (since −αL = αH λH /(1 − λH )). To see
the “only if” part, note that the assumption that c � r − φ implies c − αH < r − φ, and so
the candidate for the optimal APD policy is such that p1 = r + αH . Hence, this policy and
the optimal advance-selling policy differ only in the price at date 0. The assertion then fol-
lows from our earlier observation that π is quasi-concave in p0 for a fixed p1 (Lemma 1): if
limp0↓r [∂π(p0, r + αH )/∂p0] < 0, then ∂π(p0, r + αH )/∂p0 < 0 for all p0 � r . �

Note that if f (r) is sufficiently small so that φ is sufficiently large, there exists an APD policy
that necessarily yields higher profits than advance selling.

We now turn to the characterization of the profit-maximizing spot-selling policy where, by
definition, demand at t = 0 is zero. Under such a spot-selling policy, the monopolist’s profit can
be written as

π(∞,p1) = λH (p1 − c)
[
1 − F(p1 − αH )

] + (1 − λH )(p1 − c)
[
1 − F(p1 − αL)

]
.

Let ps ≡ arg maxp1 π(∞,p1) denote the profit-maximizing spot price.

Lemma 5. The profit-maximizing spot-selling price ps can be characterized as follows. If ps �
r + αL, the profit-maximizing spot price ps is uniquely determined by

ps =
{

c + 1−F(ps−αH )
f (ps−αH )

if c − αH > r − φ,

r + αH otherwise.
(11)

If ps < r + αL, the profit-maximizing spot price ps satisfies

ps = c + (1 − λH )[1 − F(ps − αL)] + λH [1 − F(ps − αH )]
(1 − λH )f (ps − αL) + λH f (ps − αH )

. (12)

Proof. Suppose first that ps � r + αL, i.e., each consumer buys the good only when v(r) =
vH (r) if at all. In this case, the monopolist’s profit can be rewritten as

π(∞,p1) = λH (p1 − c)
[
1 − F(p1 − αH )

]
.

By the monotone hazard rate assumption, π(∞,p1) is strictly quasi-concave in p1. From the
first-order condition, the profit-maximizing spot price ps satisfies

ps =
{

c + 1−F(ps−αH )
f (ps−αH )

if c − αH > r − φ,

r + αH otherwise.

Suppose now that the spot price satisfies ps < r + αL (i.e., there are some consumer types that
consume independently of the realization of the shock). In that case, the monopolist’s profit is
given by

π(∞,p1) = (p1 − c)
{
λH

[
1 − F(p1 − αH )

] + (1 − λH )
[
1 − F(p1 − αL)

]}
,



150 V. Nocke et al. / Journal of Economic Theory 146 (2011) 141–162
where F(p1 − αH ) = 0 and f (p1 − αH ) = 0 if p1 < r + αH . From the first-order condition, the
profit-maximizing spot price satisfies

ps = c + (1 − λH )[1 − F(ps − αL)] + λH [1 − F(ps − αH )]
(1 − λH )f (ps − αL) + λH f (ps − αH )

. �
Note that, if ps � r + αL, the spot price coincides with the price at t = 1 under the optimal

APD policy, ps = p̂1, as can be seen from Eqs. (4) and (6). The following lemma shows that spot
selling yields higher profits than advance-purchase discounts if and only if it is socially efficient
to serve even a consumer of type r only when v(r) = vH (r).

Lemma 6. There exists an APD policy that yields strictly larger profits to the monopolist than
the optimal spot-selling policy (∞,ps) if and only if c − αL < r − φ.

Proof. Suppose first that ps < r + αL. Since π(∞,ps) = π(ps,ps), spot selling is not optimal
if

lim
p0↑ps

∂π
(
p0,p

s
)/

∂p0 < 0,

i.e., if introducing a small advance-purchase discount, holding the date-1 price fixed at ps , in-
creases the monopolist’s profit. From (2) we have

lim
p0↑ps

∂π(p0,p
s)

∂p0
= 1 − F

(
ps − αL

) − (
ps − c

)
f

(
ps − αL

)
.

This expression is negative if and only if

ps − c >
1 − F(ps − αL)

f (ps − αL)
.

Using (12), this inequality can be rewritten as

(1 − λH )[1 − F(ps − αL)] + λH [1 − F(ps − αH )]
(1 − λH )f (ps − αL) + λH f (ps − αH )

>
1 − F(ps − αL)

f (ps − αL)
,

which is equivalent to

1 − F(ps − αH )

f (ps − αH )
>

1 − F(ps − αL)

f (ps − αL)
.

This inequality is implied by the monotone hazard rate assumption.
Suppose second that ps � r + αL. We distinguish between two cases: (i) r − c + αL > φ, and

(ii) r − c + αL � φ. We begin with case (i), r − c + αL > φ. We show that, starting from any
spot-selling policy (∞,p1), the monopolist can increase her profit by selling to the highest types
ε-close to r at date t = 0 at price p̃0 = (1 −λH )(r − ε)+λH (p1 −αH ) while holding the date-1
price fixed at p1, provided ε is sufficiently small. To see this, note that

∂π(p̃0,p1)

∂p0
= 1 − F(r − ε) −

[
r − ε − λH αH

1 − λH

− c

]
f (r − ε)

= 1 − F(r − ε) − [r − ε + αL − c]f (r − ε).

Rearranging and taking the limit as ε → 0, the RHS becomes negative if and only if

r + αL − c < φ ≡ lim
1 − F(r)

,

r↑r f (r)
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which holds by assumption in case (i). Hence, it cannot be optimal for the monopolist to sell at
date t = 1 only if c − αL < r − φ.

We now turn to case (ii), r − c + αL � φ. We show that, starting from any APD policy
(p̃0, p̃1) – which (by definition) induces positive demand at each date – the firm can increase its
profit by slightly raising the date-0 price while holding fixed the date-1 price. From Eq. (3), we
have ∂π(p̃0, p̃1)/∂p0 > 0 if and only if

r̃ − c + αL <
1 − F(r̃)

f (r̃)
,

where r̃ = [p0 − λH (p1 − αH )]/(1 − λH ) ∈ (r, r). The LHS is increasing in r̃ while, by the
monotone hazard rate assumption, the RHS is strictly decreasing in r̃ and converges to φ as
r̃ → r . Hence the inequality is implied by r − c + αL � φ, as postulated. By continuity of π , we
thus have

π(p̃0, p̃1) < π(p̃1, p̃1) = π(∞, p̃1) � π
(∞,ps

)
,

i.e., any APD policy yields strictly lower profits than the optimal spot-selling policy. �
Using Lemmas 2, 4, and 6, we obtain the main result of this section.

Proposition 1. The monopolist’s unique optimal simple pricing policy involves advance-
purchase discounts, characterized in Lemma 2, if and only if r − φ < c − αL < r − φ.

Proof. By Lemma 4 there exist APD policies that yield higher profits than the profit-maximizing
advance-selling policy if and only if r − φ < c − αL; by Lemma 6 there exist APD policies that

yield higher profits than the profit-maximizing spot-selling policy if and only if c − αL < r − φ.
This implies that the optimal pricing policy must induce positive demand at each date. In this
case the monopolist’s optimal pricing policy is the APD policy (p̂0, p̂1), which is characterized
in Lemma 2. �

The proposition implies that, for advance-purchase discounts to be the monopolist’s optimal
pricing policy, there must be sufficient heterogeneity in the expected valuation r . In the limit
as r → −αL and r → ∞, the profit-maximizing pricing policy is necessarily an APD policy.
In contrast, as heterogeneity in the expected valuation disappears, r − r → 0, advance-purchase
discounts are never optimal.9

We now briefly discuss the welfare consequences of prohibiting APD policies. We begin by
providing a sufficient condition under which such a prohibition is undesirable.

Proposition 2. Suppose that r − φ < c − αH and c − αL < r − φ, the inverse hazard function
[1 − F(·)]/f (·) is weakly convex in r , and the optimal spot-selling price satisfies ps � r + αL.
Then, prohibiting advance-purchase discounts reduces consumer surplus and total surplus (and
makes no consumer better off ).

Proof. Note that since r − φ < c − αH < c − αL < r − φ, by Proposition 1, the monopolist’s
optimal pricing policy involves advance purchase discounts. First, we compare the prices under

9 This confirms the finding by Courty [3] who considers the case where all consumers have the same expected valuation,
which corresponds to r = r .
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an APD policy with the price under advance selling. We claim that consumers are better off
under an APD policy than under advance selling, provided c − αH > r − φ and the inverse
hazard function [1 − F(·)]/f (·) is weakly convex. To prove this claim, we first show that p̂1 <

pa + αH . To see this, recall from Lemma 3 that the profit-maximizing advance-selling price
(when c − αH > r − φ) is given by

pa = c + 1 − F(pa)

f (pa)
. (13)

Evaluating the RHS of this equation at pa = p̂1 − αH yields

c + 1 − F(p̂1 − αH )

f (p̂1 − αH )
.

But, from Lemma 2, this expression is equal to p̂1, which is larger than pa at pa = p̂1 − αH .
That is,

pa < c + 1 − F(p)

f (p)

∣∣∣∣
pa=p̂1−αH

.

The LHS of the equation is increasing in pa , while the RHS is decreasing in pa (by the monotone
hazard rate assumption). Hence, there exists a unique pa > p̂1 − αH that satisfies Eq. (13). This
means that all those consumers with types p̂1 − αH < r < pa − αL are strictly better off under
APD than under advance selling.

From Lemma 2, the date-0 price of the profit-maximizing APD policy is given by

p̂0 = λH

[
c + 1 − F(p̂1 − αH )

f (p̂1 − αH )

]
+ (1 − λH )

[
c + 1 − F(

p̂0−λH (p̂1−αH )
1−λH

)

f (
p̂0−λH (p̂1−αH )

1−λH
)

]
. (14)

We claim that p̂0 � pa if the inverse hazard function [1−F(·)]/f (·) is weakly convex (with strict
inequality under strict convexity). To see this, note that the RHS of Eq. (14) is a weighted average
of c + [1 − F(r ′)]/f (r ′) and c + [1 − F(r ′′)]/f (r ′′) with weights λH and 1 − λH , respectively,
and with r ′ = p̂1 − αH and r ′′ = [p̂0 − λH (p̂1 − αH )]/(1 − λH ). The same weighted average of
r ′ and r ′′ is equal to p̂0: λH r ′ + (1 − λH )r ′′ = p̂0. If the inverse hazard function is linear (which
is the case if the distribution of types is uniform), it follows that Eq. (14) can be rewritten as
p̂0 = c + [1 − F(p̂0)]/f (p̂0). Comparing this equation with (13), we obtain that p̂0 = pa . More
generally, if the inverse hazard function is weakly convex, the RHS of Eq. (14) is weakly larger
than c + [1 − F(p̂0)]/f (p̂0), so that p̂0 � c + [1 − F(p̂0)]/f (p̂0). By the monotone hazard rate
assumption, there exists a unique p̂0 � pa that satisfies Eq. (14). This means that no consumer
is worse off under APD than under advance selling.

Second, we compare the prices under an APD policy to the price under spot selling. From
Lemmas 2 and 5, it follows that the date-1 APD price is always equal to the spot-selling price if
the optimal spot-selling price satisfies ps � r + αL. This implies that consumers are better off if
the monopolist uses the optimal APD policy rather than the optimal spot-selling policy because
some consumers prefer to buy at a discount under APD. �

Note that the conditions c − αH > r − φ and ps � r + αL hold for marginal costs sufficiently
large. In general, however, the welfare effects of prohibiting APD policies are ambiguous. This
may not be too surprising in light of the fact that the welfare effects of second-degree price
discrimination are generally ambiguous. For instance, to compare APD with advance selling,
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consider the case c < r − φ In that case, p̂0 > pa = r . Since also p̂1 = r + αH = pa − αH ,
it is straightforward to see that all consumers are worse or equally well off under APD than
under advance selling. As to comparing APD with spot selling, it is possible to show that, if
ps < r + αL, at least some consumers are worse off when the monopolist chooses an APD
policy.

4. A mechanism design perspective

In this section, we extend the model in two directions. First, we allow for a more general
shock structure in which the shock vz(r) − r can depend (in an affine-linear fashion) on the
consumer’s type r . Second, we consider gradual resolution of uncertainty such that the consumer
obtains an informative signal about his ex-post valuation at an intermediate date τ . We analyze
the extended model by adopting a mechanism design approach. Most importantly, we show that
the optimal mechanism can always be implemented by one of our three simple pricing policies –
APD, advance selling, spot selling – and provide necessary and sufficient conditions for the
optimality of each of these policies. In particular, it is not optimal for the monopolist to sell the
good to some consumers at the intermediate date τ .

4.1. Model extension

In the baseline model, we assumed vz(r) = r + αz for z ∈ {L,H } and all r , i.e., the shock
vz(r) − r is independent of r . We now generalize by assuming that the shock is an affine-linear
function of r :

vz(r) = αz + βzr, z ∈ {L,H }.
Since E[v(r)|r] = r , we have λLβL + λH βH = 1 and λLαL + λH αH = 0. The retained assump-
tion that vH (r) > vL(r) � 0 for all r ∈ [r, r] imposes additional restrictions on the values of the
αz’s and βz’s.10

In the baseline model, we assumed that there are only two selling dates: t = 0, where each
consumer only knows his type (expected valuation) r , and t = 1, where each consumer knows
his ex-post valuation v(r). We now extend this model by assuming that each consumer obtains an
informative signal s ∈ {l, h} about his ex-post valuation v(r) at some intermediate date τ ∈ (0,1).
The question of interest is whether the monopolist optimally sells the good to some consumers at
that date. State s = h occurs with probability ρh and state s = l with probability ρl . Conditional
on obtaining the signal s, the probability that consumer r’s ex-post valuation is vz(r) is denoted
λs

z ∈ (0,1), where λs
L = 1 − λs

H by construction and λh
H > λl

H by the informativeness of the
signal, and so λh

L < λl
L. Moreover, Σs∈{l,h}λs

zρs ≡ λz for z ∈ {L,H }.

4.2. A mechanism design analysis

We now adopt a mechanism design approach to analyze the extended model. First, we de-
scribe a set of direct mechanisms which we obtain when we impose only a part of the relevant
incentive compatibility constraints and the ex-ante individual rationality constraint. Then, we

10 In the baseline model, vH (r) > vL(r) � 0 for all r and λLαL + λH αH = 0 implied αH > 0 > αL . This is no longer
the case here.
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use this larger set of direct mechanisms (which contains all incentive compatible mechanisms
and some that are not incentive compatible) to derive an upper bound on the profit attained by
the optimal incentive compatible mechanism. In the next subsection, we show that this upper
bound on profit can always be attained by one of the three simple pricing policies (APD, advance
selling, spot selling) that do not involve selling at the intermediate date τ .

Since consumers obtain information sequentially, we consider the following (direct) sequen-
tial mechanism.11 Each consumer (agent) announces his type r̂ ∈ [r, r] at date 0, his signal
ŝ ∈ {l, h} at date τ , and the state of his ex-post valuation ẑ ∈ {L,H } at date 1. After observing r ,
the agent has, at date 0, the option not to play the mechanism and to obtain an outside value
of zero (individual rationality). After date 1, the consumer is allocated the good with probability
q(r̂, ŝ, ẑ) and has to make a payment t (r̂, ŝ, ẑ) to the monopolist (principal). A consumer’s (pure)
strategy is a collection of functions r̂(r) ∈ [r, r], ŝ(r̂|r, s) ∈ {l, h} and ẑ(r̂, ŝ|r, s, z) ∈ {L,H } de-
scribing how previous announcements and information map into announcements. Prior to date 0,
the monopolist commits to a mechanism {q(r̂, ŝ, ẑ), t (r̂, ŝ, ẑ)}. A consumer’s realized net surplus
is u = qv − t ; the monopolist’s profit from this consumer is π = t − qc.

We now focus on mechanisms that satisfy the incentive-compatibility constraints at date 0
only, ignoring the constraints at dates τ and 1. The date-0 incentive-compatibility constraints are
given by

E
[
q(r, s, z)v − t (r, s, z)

∣∣r] � E
[
q
(
r̂(·), ŝ(·), ẑ(·))v − t

(
r̂(·), ŝ(·), ẑ(·))∣∣r] (15)

for any r and any functions r̂(r), ŝ(r̂|r, s), ẑ(r̂, ŝ|r, s, z). Necessary for (15) is that the inequality
holds for the specific functions ŝ(r̂|r, s) = s and ẑ(r̂, ŝ|r, s, z) = z, i.e., in the case where the
agent always reveals the information he obtains at dates τ and 1 truthfully,

E
[
q(r, s, z)v − t (r, s, z)

∣∣r] � E
[
q(r̂, s, z)v − t (r̂, s, z)

∣∣r] (16)

for any r and any r̂ . Eq. (16) can be written as∑
(s,z)

∈{l,h}×{L,H }

ρsλ
s
z

[
q(r, s, z)vz(r) − t (r, s, z)

]

�
∑
(s,z)

∈{l,h}×{L,H }

ρsλ
s
z

[
q(r̂, s, z)vz(r) − t (r̂, s, z)

]
. (17)

Define

Q(r) ≡
∑
(s,z)

∈{l,h}×{L,H }

ρsλ
s
zβzq(r, s, z),

S(r) ≡
∑
(s,z)

∈{l,h}×{L,H }

ρsλ
s
z

[
t (r, s, z) − αzq(r, s, z)

]
and

T (r) ≡
∑
(s,z)

∈{l,h}×{L,H }

ρsλ
s
zt (r, s, z).

11 Since the revelation principle applies, we can restrict attention to direct mechanisms without loss of generality.
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Then, using the linear structure of vz(r), Eq. (17) becomes

Q(r)r − S(r) � Q(r̂)r − S(r̂). (18)

After interchanging the roles of r and r̂ , we obtain

Q(r̂)r̂ − S(r̂) � Q(r)r̂ − S(r). (19)

Note that (18) and (19) together imply[
Q(r) − Q(r̂)

]
r � S(r) − S(r̂) �

[
Q(r) − Q(r̂)

]
r̂ (20)

which can be satisfied only if Q(r) is weakly increasing. Monotonicity of Q(r) implies that Q(r)

must be differentiable almost everywhere. Moreover, E[q(r, s, z)v − t (r, s, z)|r] = Q(r)r −S(r)

is continuous for any r ∈ [r, r].12

After dividing Eq. (20) by r − r̂ and letting r̂ → r , we obtain for almost all r that
Q′(r)r − S′(r) = 0. After integrating (and using continuity of Q(r)r − S(r)), we get S(r) =
Q(r)r − ∫ r

r
Q(ρ)dρ −[Q(r)r −S(r)]. Rewriting yields the following condition on the expected

transfer:

T (r) =
∑
(s,z)

∈{l,h}×{L,H }

ρsλ
s
zq(r, s, z)vz(r) −

r∫
r

∑
(s,z)

∈{l,h}×{L,H }

ρsλ
s
zβzq(ξ, s, z)dξ

−E
[
q(r, s, z)v − t (r, s, z)

∣∣r = r
]
. (21)

We thus obtain the following lemma:

Lemma 7. A necessary condition for incentive compatibility is that Eq. (21) is satisfied for all
r ∈ [r, r].

We now derive an upper bound on profit attained by the optimal mechanism. To this end, we
consider mechanisms with allocation rule q(r, s, z) and transfer function t (r, s, z) that satisfy the
necessary condition for incentive compatibility from Lemma 7 and individual rationality.

The monopolist’s expected profit is

Π ≡
r∫

r

[
T (r) −

∑
(s,z)

∈{l,h}×{L,H }

ρsλ
s
zq(r, s, z)c

]
f (r)dr

12 Assume to the contrary that E[q(r, s, z)v − t (r, s, z)|r] is not continuous. Then there exists a value r

and a sequence {ri }i converging to r such that limi→∞ Q(ri )ri − S(ri ) �= Q(r)r − S(r). Eq. (18) implies
[Q(r)r −S(r)]−[Q(ri )ri −S(ri )] � Q(ri )(r − ri ) and (19) implies Q(r)(r − ri ) � [Q(r)r −S(r)]−[Q(ri )ri −S(ri )].
Note that Q(r) is a linear combination of the q(r, ·,·)’s (which are probabilities), with the weights being indepen-
dent of r . Hence, Q(·) is bounded, and thus limri→r Q(ri )(r − ri ) = 0 and limri→r Q(r)(r − ri ) = 0, implying
limr →r [Q(r)r − S(r)] − [Q(ri )ri − S(ri )] = 0, a contradiction.
i



156 V. Nocke et al. / Journal of Economic Theory 146 (2011) 141–162
=
r∫

r

[ ∑
(s,z)

∈{l,h}×{L,H }

ρsλ
s
zq(r, s, z)

[
vz(r) − c

]

−
r∫

r

∑
(s,z)

∈{l,h}×{L,H }

ρsλ
s
zβzq(ρ, s, z)dρ

]
f (r)dr

− E
[
q(r, s, z)v − t (r, s, z)

∣∣r = r
]
. (22)

Note that the integral on the RHS of (22) exists as the distribution of r has a finite mean. Inte-
grating by parts, Eq. (22) can be written as

Π =
r∫

r

∑
(s,z)

∈{l,h}×{L,H }

ρsλ
s
zq(r, s, z)

[
vz(r) − c − 1 − F(r)

f (r)

]
f (r)dr

− E
[
q(r, s, z)v − t (r, s, z)

∣∣r = r
]
. (23)

By individual rationality, E[q(r, s, z)v − t (r, s, z)|r = r] � 0. Letting

wz(r) ≡ vz(r) − c − 1 − F(r)

f (r)

with wz(r) = vz(r) − c − φ and wz(r) = vz(r) − c − φ, we obtain an upper bound on profit:

Π �
r∫

r

∑
(s,z)

∈{l,h}×{L,H }

ρsλ
s
zq(r, s, z)wz(r)f (r)dr

�
r∫

r

∑
(s,z)

∈{l,h}×{L,H }

ρsλ
s
z max

{
wz(r),0

}
f (r)dr ≡ Π. (24)

We thus have derived the following lemma:

Lemma 8. The profit attained by the optimal mechanism cannot exceed Π , as defined in Eq. (24).

From (23) and (24), we obtain the following proposition.

Proposition 3. If there exists an incentive-compatible mechanism for which

q(r, s, z)

⎧⎨
⎩

= 1 if wz(r) > 0,

∈ [0,1] if wz(r) = 0,

= 0 if wz(r) < 0
(25)

and

E
[
q(r, s, z)v − t (r, s, z)

∣∣r = r
] = 0, (26)

then this mechanism maximizes the monopolist’s profit. Moreover, if an incentive-compatible
mechanism satisfying Eqs. (25) and (26) exists, then any optimal ( profit-maximizing) mechanism
must satisfy these equations (Eq. (25) almost everywhere).
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4.3. Implementing the optimal mechanism through simple pricing policies

Assuming that wz(r) is strictly increasing in r for z ∈ {L,H }, which is implied by βz �
0, we now show that the upper bound on profit can always be obtained by a simple pricing
policy (p0,pτ ,p1) that does not involve selling at the intermediate date τ . We distinguish three
cases.

Case 1: wL(r) � 0. In this case, wz(r) � 0 for all r , s, and z. Hence, the monopolist always
wants to sell to all consumers. Setting the probability q(r, s, z) = 1 and the transfer t (r, s, z) =
E[q(r, s, z)v|r = r] is an incentive-compatible mechanism that satisfies Eqs. (25) and (26). Note
that the mechanism is constant, i.e., q(r, s, z) and t (r, s, z) do not depend on r , s, and z. Advance
selling at price p0 = r implements this mechanism (and trivially satisfies the neglected incentive
compatibility constraints) while other simple selling policies do not and are therefore not optimal.
For instance, for spot selling to yield q(r, s, z) = 1 for all r , s, and z, the spot-selling price would
have to be set at p1 = vL(r) < r , i.e., t (r, s, z) = vL(r), implying that the date-0 individual
rationality constraint is slack even for the lowest type. But this violates Eq. (26).

Case 2: wL(r) � 0. In this case, wL(r) � 0 for all r and s. Hence, the monopolist never wants
to sell to consumers who turn out to be in state z = L, i.e., q(r, s,L) = 0 and t (r, s,L) = 0 for
all r and s. However, the monopolist wants to sell with probability one to those consumers who
turn out to be in state z = H and who are of sufficiently high type r � r̃ ≡ min{r|wH (r) � 0},
and never to consumers with r < r̃ :

q(r, s,H) =
{

1 if r � r̃ ,

0 if r < r̃.

Inserting these probabilities into Eq. (21) yields the transfer payments:

t (r, s,H) =
{

vH (r̃) if r � r̃ ,

0 if r < r̃.

It can easily be checked that this mechanism satisfies Eqs. (25) and (26). Spot selling with
date-1 price p1 = vH (r̃) implements this mechanism (and satisfies the neglected incentive
compatibility constraints), while other simple pricing policies do not and are therefore not opti-
mal.

Case 3. wL(r) < 0 and wL(r) > 0. In this case, the monopolist wants to sell to the highest
types with probability one, independently of the realization of s and z, never to the lowest types,
and to intermediate types only in state z = H , independently of the realization of s:

q(r, s,L) =
{

1 if r � r̃ ′′,
0 if r < r̃ ′′,

q(r, s,H) =
{

1 if r � r̃ ′,
0 if r < r̃ ′,

where r̃ ′ ≡ min{r|wH (r) � 0} and r̃ ′′ ≡ min{r|wL(r) � 0}. Since wH (r) > wL(r), we have
r̃ ′ < r̃ ′′. Inserting these probabilities into Eq. (21) yields the transfer payments:

t (r, s,L) =
{

λH vH (r̃ ′) + λLvL(r̃ ′′) if r � r̃ ′′,
0 if r < r̃ ′′,
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t (r, s,H) =
⎧⎨
⎩

λH vH (r̃ ′) + λLvL(r̃ ′′) if r � r̃ ′′,
vH (r̃ ′) if r̃ ′ � r < r̃ ′,
0 if r < r̃ ′.

It can easily be checked that this mechanism satisfies Eqs. (25) and (26). An APD policy with
a price path given by Lemma 2 implements this mechanism and also satisfies the neglected
incentive compatibility constraints. Again, it is straightforward to verify that other simple pricing
policies do not implement the optimal mechanism.

These insights are summarized in the following proposition:

Proposition 4. Suppose that wz(r) is strictly increasing in r for z ∈ {L,H }. The optimal mech-
anism can always be implemented by a simple pricing policy with sales at dates 0 or 1 only.
Specifically, the optimal mechanism is implemented by:

1. an advance-selling policy if wL(r) � 0,
2. a spot-selling policy if wL(r) � 0, and
3. an APD policy otherwise.

Spot selling and advance selling emerge only as special cases of the optimal mechanism. The
“normal” case is the one where an APD policy is optimal. To see this, note that wL(r) < 0 <

wL(r) if the support of r is sufficiently large (in that r is sufficiently small and r sufficiently large)
and βL > 0. However, if all consumers have (almost) the same ex-post valuation conditional
on suffering a negative shock z = L, and this valuation is less than the marginal cost c, then
spot selling implements the optimal mechanism: Assuming αL < c, we have wL(r) < 0 for βL

sufficiently small but positive.
What is the intuition for our main result? By Proposition 3, any mechanism that induces a

profit level equal to the upper bound Π has the following two properties: it gives zero expected
utility to a consumer of type r = r and is characterized by two thresholds in the type space,
r̃ ′ = w−1

H (0) and r̃ ′′ = w−1
L (0), with r̃ ′ < r̃ ′′. If r ∈ [r̃ ′′, r], the consumer should always obtain

the good (condition I). If r ∈ [r̃ ′, r̃ ′′), the consumer should obtain the good only in the event
z = H (condition II). Whether condition I is met depends only on the consumer’s date-0 in-
formation. Whether condition II is met can be decided only after the consumer has learned his
date-1 information. The monopolist’s objective is, thus, to sell to the consumer at date 1 if con-
dition II is satisfied, and at date 0 if condition I is satisfied. It is always possible to achieve this
objective through a simple pricing policy: Suppose that the monopolist faces at date 1 only those
consumers with r ∈ [r, r̃ ′′) because consumers with r � r̃ ′′ already obtained the good at date 0.
Condition II is satisfied if and only if a consumer obtains the good when his realized valuation
vz(r) is larger than v1 ≡ c + (1 − F(r̃ ′))/f (r̃ ′).13 Hence, the monopolist needs to screen only
the consumer’s realized valuation. This can be achieved by offering the consumer the option
to buy the good at date 1 for a fixed price v1. It follows that a consumer with r � r̃ ′ obtains
zero expected utility. It remains to be verified that consumers with r � r̃ ′′ can be screened at
date 0. Since E[v(r)|r] = r , this amounts to screening expected date-0 valuations. As a con-
sumer with r � r̃ ′′ has a positive option value of postponing his purchasing decision until date 1,

13 Equilibrium requires wH (r̃ ′) = 0, implying vH (r̃ ′) = c+ (1−F(r̃ ′))/f (r̃ ′). As vH (·) is strictly increasing, the value
of an agent with z = H is larger than v1 = vH (r̃ ′) if r � r̃ ′ . Moreover, since equilibrium requires wL(r̃ ′′) = 0, it follows
that vL(r̃ ′′) = c + (1 −F(r̃ ′′))/f (r̃ ′′) < c + (1 −F(r̃ ′))/r̃ ′ = v1. As vL(·) is strictly increasing, we have vL(r) < v1 for
any r ∈ [r, r̃ ′′).
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λH (vH (r) − v1), the monopolist has to grant him a discount in order to incentivize him to buy
already at date 0. The desired screening level is obtained by offering him the option to buy at
date 0 at price r̃ ′′ − λH (vH (r̃ ′) − v1) = λH vH (r̃ ′) + λLvL(r̃ ′′).14

We conclude this section by highlighting some properties and extensions which build upon
this intuition:

Remark 1. Why can the private information z be handled as if it were public? In the proof of
Proposition 3, we consider the case where the realization of z is public information, although we
are interested in the case where it is private information to the consumer. We use this benchmark
case to derive an upper bound on welfare. In Proposition 4 we then show that there exists a
mechanism which attains this upper bound. In this mechanism, a consumer with z = L does not
buy the good at the date-1 price. It follows that it cannot be optimal for a consumer with z = H to
mimic, at date 1, a consumer with z = L. As a consequence, the monopolist can elicit z without
having to pay an information rent to the consumer. While the monopolist’s desired allocation
depends on z, the constructed sequential screening mechanism allows the monopolist to obtain
the private information z at date 1 “for free”.

Remark 2. Note that the logic of the proof of Proposition 3 does not rely on the specific structure
of the information at an intermediate date τ . For instance, it might be continuous or non-binary.
Any kind of information at the intermediate date attains the same upper bound on welfare as
derived in the proof of Proposition 3. Moreover, if this upper bound is attainable by some mecha-
nism which does not make use of this information, the corresponding mechanism must be optimal
for any such information. It follows that, under the conditions of Proposition 4, the specific struc-
ture of the information at date τ does not matter for the result.

Remark 3. Why is there no trade at the intermediate date τ? This is for the same reason why
the monopolist does not want to use a stochastic mechanism in the two-period model (without
any information at an intermediate date). In the proof of Proposition 3, we assume that the mo-
nopolist learns the realized z for each consumer and we derive the optimal mechanism under this
assumption. In the two-period model, she could construct a random variable s, correlated with
z. Similarly, in the extended model with gradual resolution of uncertainty, the monopolist could
use any given random variable s, correlated with z. Since she has no incentive to use the random
variable s in the former case, she has no incentive to use it in the latter.

Remark 4. Do our optimality results require binary date-1 information? If date-1 information is
non-binary, it is typically no longer the case that the monopolist needs to screen only valuations
at date 1. By proceeding in an analogous fashion to Proposition 3, we can derive an allocation
that is optimal if it is also implementable in the case where z is private information. In contrast
to the case of binary information at date 1, with non-binary information, it may happen that,
for the same value of vz(r), the monopolist desires different allocations. More precisely, there
may exist consumers (r1, z1) and (r2, z2) such that vz1(r1) = vz2(r2), but where the good is
optimally allocated to only one of them.15 However, since the consumer’s utility depends on

14 If r = r̃ ′′ , the agent just pays his (expected) valuation minus his option value. If r > r ′′ , he is strictly better off buying
early.
15 As an example, consider the case where z has three possible realizations L, M and H . Moreover, suppose that c = 0,
r ∼ U [0,1], λL = λM = λH = 1/3, αL = αM = αH = 0, βL = 1/2, βM = 1 and βH = 3/2. Then the monopolist wants
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his information only indirectly through his valuation, he will for the same valuations undertake
the same decisions (unless he is indifferent). Since simple pricing policies are only capable of
implementing allocations where the same valuations lead to the same decisions, they are (in
general) not capable of implementing the reference allocation.16 Hence, our strategy of proof
does not work for the non-binary case since date-1 information can no longer be handled as if
it were public. The monopolist may want to use “more” of the date-0 information at later dates
(for instance, through option contracts) and she may want to use “less” date-1 information to
reduce information rents. Moreover, in the case with gradual resolution of uncertainty, trading at
intermediate dates or conditioning on intermediate information may become beneficial.

Remark 5. Although we assumed that there is only an individual rationality constraint at date 0,
there always exists an implementation of the optimal mechanism such that giving the consumer
also an outside option of zero at dates τ and 1 does not alter the conclusion. One such implemen-
tation is the optimal simple pricing policy.

Remark 6. From the fact that simple pricing policies strictly dominate stochastic mechanisms, it
follows that the monopolist does not want to ration consumers by committing to a price-quantity
path (p0, q0;p1, q1) if such rationing is inefficient (in the sense that higher types are rationed
with a probability strictly between zero and one, as in the case of proportional rationing). More-
over, as we now argue, the monopolist does not want to ration consumers if the rationing rule is
efficient. To see this, suppose first that the monopolist rations consumers at date 0. Consider the
following deviation: the monopolist slightly increases price p0, keeping quantity q0 fixed. Since
this will leave unchanged the set of consumers that buy at either date, the deviation increases
the monopolist’s date-0 profit without affecting her date-1 profit. Suppose second that the mo-
nopolist rations consumers at date 1. Consider the following deviation: The monopolist slightly
increases quantity q1, keeping price p1 fixed. Under efficient rationing, this will not affect the set
of consumers that buy at date 0 (as these are high types who would not be rationed at date 1) and,
hence, will not affect the monopolist’s date-0 profit but increases her date-1 profit. To summarize,
the optimal simple pricing policy strictly dominates any price-quantity path (p0, q0;p1, q1) that
induces consumer rationing, independently of the rationing rule.

Remark 7. The above analysis relies on the assumption that βz � 0 for z ∈ {L,H }. A rather
different result obtains when βL < 0 < βH . Suppose that wL(r) is decreasing in r . (Indeed, if the

to implement the following allocation: If r ∈ [0,0.4), the consumer does not obtain the good; if r ∈ [0.4,0.5), he obtains
the good only if z = H ; if r ∈ [0.5,2/3), he obtains the good if only if z = H or z = M ; and if z ∈ [2/3,1], he always
obtains the good. Let r1 ∈ (1/3,0.4) and r2(r1) = 3/2r1, so that vH (r1) = vM(r2). Although both consumers (r1,H)

and (r2,M) have the same ex-post valuation, the optimal allocation is such that the good is allocated only to (r2,M).
16 There exist some special cases where simple pricing policies are still capable of implementing the reference alloca-
tion: (i) If we adjust the example in Footnote 15 by defining βM ≡ 1 + x and βH ≡ 1/2 − x with x ∈ (0,1/2), then
there exists a single x-value, x = 1/5, for which the monopolist needs to screen only valuations at date 1. Hence, in
this case, there exists a simple pricing policy which is capable of implementing the reference allocation. (ii) For specific
forms of gradual information revelation, simple pricing policies with trade at more than two dates may be capable of
implementing the reference allocation. As an example, consider again the case where z can assume three values, as de-
scribed in Footnote 15. If the consumer learns at an intermediate date whether z = L or z �= L, the construction for the
binary case can be “applied iteratively”. This way, a simple pricing policy is constructed where consumers buy at date 0
if r ∈ [2/3,1] and z ∈ {L,M,H }; at date τ if r ∈ [0.5,2/3) and z ∈ {M,H }; and at date 1 if r ∈ [0.4,0.5) and r = H .
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hazard rate of r is finite everywhere, then wL(r) is decreasing in r for βL sufficiently negative.)17

Then, an APD policy implements the optimal mechanism if and only if wL(r) > 0 > wL(r). In
contrast to the APD policy considered above, however, it will be the low types that buy the good
at t = 0 and the high types that buy the good at t = 1 whenever z = H . To understand this, note
that the high types face much greater uncertainty than the low types when wL(r) is decreasing
in r . The optimal mechanism, in this case, prescribes selling to the high types only when z = H

and selling to the low types independently of z. (The same result would obtain if consumers
differed only in the degree of uncertainty they face but not in their expected valuations.)

5. Conclusion

In this paper, we have provided a novel theory of advance-purchase discounts in which
advance-purchase discounts serve as a pure price discrimination device. In contrast to exist-
ing explanations of advance-purchase discounts, our theory does not rely on scarce capacity or
aggregate demand uncertainty. The key feature of our theory is that consumers face individual
uncertainty over their future valuation for the good and this uncertainty is resolved over time.
This allows a monopoly seller to charge different prices for the same product at different dates
prior to consumption. Consumers with a high expected valuation will purchase the product in ad-
vance at a discount, while consumers with a low expected valuation will delay their purchasing
decision and buy at the regular price only when their realized valuation turns out to be high. As-
suming that the distribution of shocks to consumer preferences is binary, we obtain a necessary
and sufficient condition under which advance-purchase discounts implement the monopolist’s
optimal mechanism. This implies, in particular, that more complicated contracts such as partial
refund contracts cannot lead to higher profits.

Our analysis has been motivated by the pricing policies for holiday packages, hotel rooms,
rental car hires, and conferences. Another group of examples are tickets for the soccer world cup
and other sports or cultural events. For instance, consider the ticket sale for a particular match.
Consumers are willing to pay a premium in the event that their favorite team or player makes
it into this match. Thus, the organizers of the tournament can use advance-purchase discounts
as a price discrimination strategy (provided secondary markets can be dried out, which may be
achieved by “personalizing” tickets as in the 2006 soccer world cup). Relatedly, active partici-
pation in a sports event (such as a mass running event) typically requires personal registration.
Our analysis also extends to the introduction of new experience goods where consumers face
uncertainty about the product’s characteristics. For our theory to be directly applicable, this un-
certainty must reflect horizontal taste heterogeneity. In such a setting, consumers with a high
expected valuation tend to buy early, while those with a lower expected valuation wait and buy
only if the actual product characteristics fit their taste.18
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