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Abstract

A large polarized electorate decides repeatedly between a reversible alternative (REMAIN) and

an irreversible alternative (LEAVE) in an environment where the aggregate short-term effects

of the decision vary from period to period. Decisions by simple majority or by a too low

supermajority may perform poorly under circumstances where it is socially optimal to never

LEAVE, as they can exhibit equilibria where LEAVE is chosen quickly. In general, a too low

supermajority rule can have much higher welfare costs than a too high supermajority rule. If

REMAIN also becomes permanent when it wins by a large enough margin, and if a new vote is

triggered otherwise, particularly poor performances of the simple majority rule are avoided. The

large asymmetry in potential welfare costs disappears, and the majority requirement becomes

a relatively less important instrument.
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1. Introduction

On 23 June 2016 the UK voted by referendum to leave the European Union. The referendum

required a simple majority for LEAVE. While LEAVE is widely believed to be irreversible for

the foreseeable future, maybe for a whole generation or more, REMAIN just defers the final

decision and allows a new vote in the future—hence it is potentially reversible. Other Brexit-

like decisions that were decided by simple majority were the 1995 Quebec-Referendum, and the

2014 Scottish independence referendum. The 2006 Montenegrin independence referendum used

a 55% supermajority rule.

Should such fundamental decisions between two asymmetric options be made by a symmetric

procedure like simple majority? To study this question, we introduce a tractable, dynamic

framework of a polarized society who chooses among a reversible option (called here REMAIN)

and an irreversible one (called here LEAVE). Our main findings are

1. In environments where it is sometimes optimal to LEAVE, the irreversible option LEAVE

is adopted too easily. Supermajority rules can lead to better decisions.

2. In environments where it is never optimal to LEAVE, an equilibrium where LEAVE is

chosen quickly can coexist with one where LEAVE is never chosen. Requiring a sufficiently

large supermajority for LEAVE avoids the existence of the welfare-inferior equilibrium.

3. There is an asymmetry in the potential welfare costs from non-optimal rules: a too low

supermajority rule can have a much higher cost than a too high supermajority rule.

4. Welfare-inferior equilibria can often be avoided without fine-tuning if a final decision for

either alternative requires winning by a certain margin.

From an axiomatic (and static) perspective, there are reasons in favor of the simple majority

rule (May, 1952, Dasgupta and Maskin, 2008). Most notably, supermajority rules do not respect

the “one person-one vote” principle: they allow a minority to impose the status quo on a

majority that may prefer change. In dynamic contexts where LEAVE is likely to be better

in the future, this can be particularly harmful if it allows the initial status quo, REMAIN, to

prevail for a very long time.
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In our model, a large electorate repeatedly decides between REMAIN and LEAVE. The

latter option ends the decision process. An agent knows in each period whether he is a LEAVE-

winner or a LEAVE-loser from a short-term perspective, but faces uncertainty about future

payoffs.

Whether an agent sees himself as a LEAVE-winner or a LEAVE-loser from a short-term

perspective depends on the temporary issues, like a refugee crisis, a pandemic, a deep recession.

We thus allow the mass of short-term LEAVE-winners to fluctuate over time, and we distinguish

among two types of environments: the environment is REMAIN-friendly (LEAVE-friendly)

if the probability of a future majority of LEAVE-winners is lower (higher) that 50%. The

existence of only two types of agents models a simple notion of extreme polarization, but our

results continue to hold in less polarized societies.1

We normalize our model such that, in the benchmark case where both decisions are re-

versible, it is socially optimal to choose the option preferred by a majority from a short-term

perspective. Contrasting the benchmark case, REMAIN yields a positive option value when

LEAVE is irreversible. Two main scenarios arise: If the environment is REMAIN-friendly, and

if discounting is not too high, it is socially optimal to never LEAVE. Otherwise, it is socially

optimal to LEAVE in the first period with a sufficiently large supermajority of LEAVE-winners.

An agent’s preferred decision may differ from the social planner’s preferred decision for

two reasons. Firstly, polarized agents have a more extreme view about the short-term effects

whereas the planner weighs aggregate effects. Secondly, an agent who expects sub-optimal

future decisions underestimates the option value of REMAIN.

Suppose first that it is socially optimal to never LEAVE and that simple majority is used.

If an agent believes that the other agents vote myopically, he might expect that LEAVE will

nevertheless be soon chosen. But, then the agent perceives the future consequences of LEAVE

and of REMAIN as almost equal, and it may be thus individually optimal to vote myopically.

A welfare-inferior equilibrium where LEAVE is quickly chosen often coexists with a welfare-

optimal equilibrium where LEAVE is never chosen. This can be the case even though LEAVE-

1Fueled by the rise of the internet and social media, polarization became increasingly important during the
last two decades (Sunstein, 2018).
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winners agree with LEAVE-losers that it would be optimal to never LEAVE, and even if all

agents perceive the future as arbitrarily more important than the present.

The welfare-inferior equilibrium generally ceases to exist if a sufficiently large supermajority

is required for LEAVE. Intuitively, under a supermajority rule, LEAVE is, on average, chosen

at a later point in time. This makes it harder to support the belief that the future consequences

of LEAVE and of REMAIN are similar.

Suppose next that the mass of current LEAVE-winners determines which decision is socially

optimal. Myopic voting constitutes then a unique equilibrium for any supermajority rule that

is not too large. Decisions by simple majority fail to reflect the option value of REMAIN.

Supermajority rules allow to correct this failure by shifting the pivotal agent in the direction

that is less eager to LEAVE.

In practice it is not always clear which precise game is being played. For example, the leader

of the UK Independence party, Nigel Farage, a major Brexit proponent, warned shortly before

the referendum that he would fight for a second referendum if the REMAIN campaign won by

a narrow margin:

“In a 52%-48% referendum this would be unfinished business by a long way. If the

remain campaign win two-thirds to one-third that ends it.”2

In view of such possibilities, we next analyze the game where the decision process ends as

soon as either REMAIN or LEAVE wins by an a priori defined margin; if neither alternative

wins by this margin, the vote is repeated in the next period. Even though voting at each stage

is binary, such a mechanism effectively creates three social alternatives: LEAVE, REMAIN for

now but vote again next period, and REMAIN forever.

For any margin required by a final decision, the myopic equilibrium in environments where it

is socially optimal to never LEAVE and all agents view the future as arbitrarily more important

than the present disappears now: LEAVE is then never chosen in equilibrium. A rough intuition

is the following: If the agents expect that LEAVE might nevertheless be chosen in the future,

2“Nigel Farage wants second referendum if Remain campaign scrapes narrow win”, Mirror, 16 May 2016.
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there exist circumstances under which REMAIN will win by a large enough margin to be logged

it. This expectation drives in turn a wedge in the agents’ assessment of REMAIN and LEAVE.

If the future is important enough, this wedge is large and even LEAVE-winners always have

an incentive to vote for REMAIN. However, there is still a role for supermajority rules if it

is sometimes optimal to LEAVE. Requiring an optimally chosen supermajority for LEAVE

implements then the socially optimal policy.

1.1. Related Literature

The classical literature on investment studies a single agent’s trade-off between committing

to an irreversible decision and waiting (see Dixit and Pindyck (1994) for a review). Instead,

our focus here is on a situation where a group of agents collectively decides via voting.

In the collective search literature, a committee observes a stream of alternatives (candidates,

proposals, …) and search ends when an alternative is accepted by a certain majority.3 Recent

contributions to this literature (Albrecht et al., 2010, Compte and Jehiel, 2010, Moldovanu

and Shi, 2013) focused on the nature of the accepted proposals for exogenously fixed decision

rules. The payoff structure in that literature resembles the one in a bargaining problem where

the accepted alternative generates a one-time payoff. Instead, our payoff structure resembles a

repeated game where stage payoffs are generated in each period. This difference in the payoff

structure enables the emergence of our most interesting scenario: specifically, in the collective

search literature, it is optimal from a welfare perspective to immediately accept any sufficiently

strong alternative, whereas here it can be optimal to reject the irreversible alternative forever.

Another strand of literature investigates a group’s decision to directly adopt a project, or

to wait and decide about adopting a project after new information arrives. Gersbach (1993b)

illustrates that for decisions by simple majority the option to wait can have a negative value (!).

Gersbach (1993a) compares the case where new information arrives before the second period

decision with that where it does not (or is ignored). He structures the possible cases where

obtaining new information has a positive/negative value for a set or a majority of voters and how

3This literature was initiated by Sakaguchi (1973) who analyzed equilibrium existence for two players under
the unanimity rule. Kurano et al. (1980) extend the analysis to more players and to general majority rules.
Ferguson (2005) shows that multiple stationary cutoff equilibria can exist in these models.
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commitment to having or not having future decisions could help to solve the problem. Messner

and Polborn (2012) show that a supermajority rule may be optimal and that the option to wait

can have a negative value even if the optimal majority rule is employed. However, by restricting

attention to a two-period model with i.i.d. stage payoffs and without discounting, Messner and

Polborn implicitly assumed that present and future are equally important. Allowing the future

to be more important than the present (while avoiding last round effects) as we do, adds

qualitatively new insights.

For a class of dynamic collective decision games with a unique inefficient equilibrium,

Roessler et al. (2018) study the following question: If agents ex ante have the opportunity

to collectively commit to a policy that is better than the policy induced by the unique equi-

librium, can they agree to do so? Under a power consistency condition that links the political

power in the ex ante problem with that in the dynamic game, they find that such a commitment

opportunity has no value. Both policies would be part of a Condorcet cycle. By contrast, when

the welfare-inferior equilibrium coexists with the welfare-optimal equilibrium in our majority

voting game, all agents would love to commit ex ante to the welfare-optimal policy. Responsi-

ble for this difference is the infinite repetition of our voting problem which allows for multiple

equilibria.

Fernandez and Rodrik (1991) analyze the dynamic choice between the status quo (say,

REMAIN) and a reform (LEAVE). Under simple majority voting they identify a status quo

bias if the reform is reversible and if new information about the relative benefits of the reform

only becomes available if it is adopted. Intuitively, an adopted reform that turns out to be ex-

post suboptimal will be eventually repealed. In contrast, an initially not adopted reform will

also not be adopted later because no new information that might change the voting incentives

arrives. The bias in our paper goes into the opposite direction: The main force behind the status

quo bias—the possibility to repeal the reform ex-post—disappears if the reform is irreversible.

Moreover, if new (possibly limited) information becomes available even if the reform is initially

not undertaken, an option value effect arises and causes a bias against the status quo.

Some related effects appear also in the literature on pre-commitment in environments where

preferences can change over time. For example, in Tabellini and Alesina (1990), the initial
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median voter expects that the decisions in the next period will be sometimes taken by a new

median voter with different preferences. As in our paper, this renders him excessively short-

sighted and too eager to take irreversible actions.4

2. The Model

In each period t = 1, 2, . . . there are two possible decisions: REMAIN (dt = R) and LEAVE

(dt = L). Once taken, LEAVE is irreversible. The stream of decisions d1, d2, . . . affects a

continuum of risk-neutral agents having mass 1. In each period t, each agent i obtains a stage

payoff of πi
t ∈ {0, 1} from LEAVE and a stage payoff of 1

2
from REMAIN. If πi

t = 1 (0), then

agent i is a LEAVE-winner (loser) from a short-term perspective. In Extension I in Appendix

A we explain how our results extend to a version of our model that relies on a less extreme

notion of polarization where the stage payoff from LEAVE, πi
t, can assume any value in [0, 1].

Agents discount future stage payoffs by a discount factor δ ∈ (0, 1).

The mass of LEAVE-winners, pt ∈ [0, 1], is independently and identically distributed across

periods according to a c.d.f F with p.d.f f and full support. Conditional on pt, the payoffs πi
t

are independently distributed across periods and across agents: Agent i is a LEAVE-winner

with probability pt and a LEAVE-loser with probability 1− pt. In Extension II in Appendix A

we allow for a serial correlation of individual stage payoffs across time. Let p̄ ≡ E[pt]. We call

the environment LEAVE-friendly if p̄ > 1
2
, REMAIN-friendly if p̄ < 1

2
, and neutral if p̄ = 1

2
.

The timing within a period t is as follows: First, nature draws the mass of LEAVE-winners

pt, and reveals it publicly.5 Second, nature privately reveals to each agent i whether he is a

LEAVE-winner or loser. Third, if the previous decision was REMAIN, a new decision dt is

taken. Otherwise, dt = L. Finally, stage payoffs realize.

The planner is utilitarian: her stage payoff is the average stage payoff across agents, i.e. it

is pt from LEAVE and 1
2

from REMAIN, and she discounts future stage payoffs by δ.

4Grüner (2017) approaches such a problem from a mechanism design perspective and finds a role for super-
majority rules. In Battaglini and Harstad (2020), the current decision maker uses pre-commitments to increase
the probability of staying in office by becoming more attractive for the next median voter.

5Whether pt is observable will only matter for our analysis of two-sided majority voting in Section 5 and of
Extension II in Appendix A. A motivation for the observability of pt could be that experts are able to assess
the consequences of LEAVE on the population from a short-term perspective and announce these publicly.
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3. Centralized Decision Making

If LEAVE is also reversible, the decisions in different periods are not connected. The optimal

policy follows from comparing the current stage payoffs pt and 1
2
. At each stage, it is optimal

to take the decision preferred by a majority from a short-term perspective.

If LEAVE is irreversible, the future consequences of the current decision matter. We can

denote the planner’s value of entering a period t with decision d by V ∗
d . If the previous decision

was REMAIN, her payoff from LEAVE is pt + δV ∗
L , and her payoff from REMAIN is 1

2
+ δV ∗

R.

The Bellman equations for the planner’s optimal policy are V ∗
L = E[pt + δV ∗

L ]

V ∗
R = E[max{pt + δV ∗

L ,
1
2
+ δV ∗

R}]
.

The values V ∗
d , d ∈ {R,L}, are uniquely defined. The difference ∆∗ ≡ δ(V ∗

R − V ∗
L ) represents

the option value of the reversible decision, REMAIN. A cutoff policy with cutoff p ∈ R selects

LEAVE if pt ≥ p and selects REMAIN otherwise.6 It follows from the Bellman equations that

the cutoff policy with cutoff

p∗ ≡ 1
2
+∆∗

is optimal, where ∆∗ is the unique solution to

∆∗ = δE[max{0,∆∗ + 1
2
− pt}]. (1)

Obviously, ∆∗ > 0. Relative to the case where LEAVE is reversible, the planner is biased

towards REMAIN: LEAVE is optimal only if there is a sufficiently large supermajority of

LEAVE-winners.

Lemma 1. Let

δ∗ ≡ 1

2(1− p̄)
. (2)

Then p∗ ∈ (1
2
, 1) for δ < δ∗, p∗ = 1 for δ = δ∗, and p∗ > 1 for δ > δ∗.

6Allowing for cutoffs outside the interval [0, 1] will be useful for expositional reasons although all cutoffs
p > 1, and all cutoffs p ≤ 0 describe the same policy, respectively. Specifically, p∗ as defined by the next
equation in the text can exceed 1.
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The bias is so large that it is optimal to never LEAVE if and only if the environment is

REMAIN-friendly (p̄ < 1
2
) and the future is important enough (δ ≥ δ∗). This case seems

relevant for applications with significant long-consequences, and it will give rise to interesting

effects.

It will be useful for our analysis of referenda to understand how the planner compares

non-optimal cutoff policies. For any cutoff p, consider the system of linear equations VL(p) = p̄+ δVL(p)

VR(p) = F (p)(1
2
+ δVR(p)) + (1− F (p))(E[pt|pt ≥ p] + δVL(p))

. (3)

The system possesses a unique solution. δVd(p) describes the planner’s continuation value from

decision d ∈ {L,R} if future decisions are taken according to cutoff policy p. It follows from

(3) that

∆(p) ≡ δ(VR(p)− VL(p)) =
δ

1− δF (p)

∫ p

0

(1
2
− pt)dF (pt). (4)

The utilitarian welfare from cutoff policy p is VR(p). Since the consequences of LEAVE are

exogenous, maximizing VR(p) is equivalent to maximizing the future advantage of REMAIN

over LEAVE, ∆(p). Employing ∆(p) for welfare comparisons will be convenient as it will also

determine voting incentives. Lemma B.1 in Appendix B derives properties of ∆(p) that we

will use in subsequent proofs.

4. Majority Voting with One-Sided Irreversible Decisions

Voting mechanism. Consider the voting game that is induced when decisions are taken

by (super)majority with cutoff κ ∈ [1
2
, 1): In every period t such that the previous decision

was REMAIN, each agent learns his stage payoff and then all agents simultaneously vote for

LEAVE or for REMAIN. The decision is LEAVE if the mass of LEAVE-votes, lt, is at least κ.

Equilibrium notion. We focus on Markov strategies that only condition on payoff-relevant

information.7 An equilibrium is a profile of symmetric Markov strategies such that, after any

7Informally, an agent does not condition his behavior on parts of his private information/public history that
are irrelevant if he believes that his vote is pivotal, and that other agents do not condition their behavior upon
this information.
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history where the previous decision was REMAIN, no agent has an incentive to unilaterally

deviate under the assumption that his vote is pivotal.8,9

An agent only conditions his behavior on whether he currently is a LEAVE-winner.10 Let

λ(πi
t) denote the probability with which an agent of type πi

t ∈ {0, 1} votes for LEAVE. A

Markov strategy is then described by (λ(0), λ(1)) ∈ [0, 1]2.

If all agents vote according to the Markov strategy (λ(0), λ(1)), the decision is

d(pt) =


L if ptλ(1) + (1− pt)λ(0) ≥ κ

R if ptλ(1) + (1− pt)λ(0) < κ

. (5)

Consider the system of linear equations VL = E[πi
t + δVL]

VR = E[1d(pt)=L(π
i
t + δVL) + 1d(pt)=R(

1
2
+ δVR)]

(6)

implied by policy (5). It possesses a unique solution. δVd describes the continuation value

from decision d ∈ {R,L}. This continuation value is common to all agents due to the serial

independence of individual stage payoffs.

Agent i’s payoff from LEAVE (REMAIN) in the period t is πi
t + δVL (1

2
+ δVR). The profile

where each agent votes according to the Markov strategy (λ(0), λ(1)) forms an equilibrium if,

and only if, this Markov strategy is optimal under pivotal voting given the future of advantage

of REMAIN that it generates, ∆ ≡ δ(VR − VL). Formally:
λ(πi

t) = 1 if πi
t − 1

2
> ∆

λ(πi
t) ∈ [0, 1] if πi

t − 1
2
= ∆

λ(πi
t) = 0 if πi

t − 1
2
< ∆

, πi
t ∈ {0, 1}. (7)

8This equilibrium notion is a refinement of Markov perfect equilibrium. In the version of our model with a
large finite electorate, pivotality considerations are effective, and the same policies are essentially implementable
in both versions. The continuum version simplifies the exposition.

9Pivotal voting also corresponds here to sincere voting where an agent’s vote is sincere if he votes for the
decision he prefers, taking as given the future decisions implied by the other agents’ behaviors.

10If agent i is pivotal, the decision is LEAVE (REMAIN) if he votes LEAVE (REMAIN). The payoffs he
assigns to the two options depend on his current stage payoff from LEAVE, πi

t, and on the continuation values.
If other agents do not condition on the public history, these values do not depend on it, and πi

t is the only
payoff-relevant information.
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A policy is implementable by κ-majority voting if κ-majority voting possesses an equilibrium

that induces this policy. A policy is uniquely implemented by κ-majority voting if it is the only

policy that is implementable by κ-majority voting.

Equilibrium Analysis. Consider first our benchmark case where also LEAVE is reversible.

Then, instead of (6), VR = VL and ∆ equals zero. The decision is LEAVE if the mass of LEAVE-

winners, pt, is at least κ. The optimal policy is uniquely implemented by the simple majority

rule where κ = 1
2
.

If LEAVE is irreversible, LEAVE-winners have, for any given ∆, a stronger incentive to

vote for LEAVE than LEAVE-losers, and we obtain:

Lemma 2. Only cutoff policies are implementable by κ-majority voting. If cutoff policy p is

implemented, then ∆ = ∆(p) = δ
1−δF (p)

∫ p

0
(1
2
− pt)dF (pt).

We next explain the conditions under which a cutoff policy p is implementable by κ-majority

voting: Fix any p and assume that the agents believe that future decisions are taken according

to cutoff policy p. If ∆(p) ∈ (−1
2
, 1
2
), voting is myopic, and the cutoff policy p = κ is induced.

Hence, the cutoff policy p with ∆(p) ∈ (−1
2
, 1
2
) is implementable if and only if p = κ. If

∆(p) > 1
2
, all agents vote REMAIN, and the induced decision is described by any cutoff policy

p > 1. A cutoff policy p with ∆(p) > 1
2

is implementable if and only if p > 1. Lastly, if ∆(p) = 1
2
,

LEAVE-winners are indifferent, and may vote for LEAVE with any probability λ(1) ∈ [0, 1],

whereas LEAVE-losers vote for REMAIN. Cutoff policy p with ∆(p) = 1
2

is implementable if

and only if p ≥ κ. The case where ∆(p) ≤ −1
2

leads to analogous implementability conditions.
Example. For illustrations, we use the power distribution functions

Fγ(pt) ≡

{
pγt if γ ∈ [1,∞)

1− (1− pt)
1/γ if γ ∈ (0, 1)

.

Since p̄ ≡ 1
2
+ 1

2
γ−1
γ+1

, the environment is LEAVE-friendly if γ > 1, neutral if γ = 1 and

REMAIN-friendly if γ ∈ (0, 1).

Figure Ia (Figure Ib) illustrates the implementability conditions for a REMAIN-friendly

(LEAVE-friendly) environment. In each panel, the black solid curve depicts ∆(p) for δ = 0.8

and the black dashed curve depicts ∆(p) for δ = 0.9. The black dots indicate (p∗,∆∗). The gray
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(a) REMAIN-friendly environment [γ = 3
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(b) LEAVE-friendly environment [γ = 4
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Figure I: Implementability conditions under κ-majority voting [κ = 0.6]

Implementable polices: Policies where the gray correspondence and the black curve intersects.
All cutoffs p > 1 and all cutoffs p ≤ 0 describe the same policy, respectively.

correspondence displays for any ∆ the cutoff policies p that are consistent with pivotal voting

under κ-majority voting. The intersections of the black curves and the gray correspondence

describe the implementable policies.

We address now our main questions: How does the importance of the future, relative to the

present, affect the set of implementable cutoff policies? Which (super)majority rule is optimal?

Proposition 1. Consider a REMAIN-friendly environment. Let δ∗ = 1
2(1−p̄)

. Define δM ∈

(δ∗,∞) by δM ≡ (2
∫ 1/2

0
(1− pt)dF (pt))

−1.

Case i: δ ∈ (0, δ∗). For all κ ∈ [1
2
, 1), κ-majority voting uniquely implements cutoff policy κ.

Only the supermajority rule κ = p∗ implements the optimal policy.

Case ii: δM < 1 and δ ∈ (δ∗, δM ] or δM ≥ 1 and δ ∈ (δ∗, 1). Then, ∆−1(1
2
) ∈ [1

2
, 1). For all

κ ∈ [1
2
,∆−1(1

2
)], the optimal policy p∗ > 1, which corresponds to never choosing LEAVE,

and cutoff policy κ are both implementable by κ-majority voting. For all κ ∈ (∆−1(1
2
), 1),

κ-majority voting uniquely implements the optimal policy.

Case iii: δM < 1 and δ ∈ (δM , 1). For all κ ∈ [1
2
, 1), κ-majority voting uniquely implements

the optimal policy.
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If δ < δ∗ (Case i), the short-term effects dominate any long-term effects. Voting is myopic

for any (super)majority rule. Since myopic voting fails to reflect the option value of REMAIN,

such a consideration can only come through the voting rules. A supermajority becomes optimal.

If δ > δ∗ (Cases ii and iii), the option value of REMAIN is large, and it is optimal to

REMAIN under any circumstances. The planner, LEAVE-losers and LEAVE-winners all prefer

“REMAIN forever” over LEAVE. If agents believe that LEAVE will not be chosen in the

future, all agents vote REMAIN under any (super)majority rule and the optimal policy is

implemented. This welfare-optimal equilibrium can coexist with a welfare-inferior equilibrium

where agents vote myopically: if they believe that REMAIN today will lead to LEAVE soon,

the perceived future advantage of REMAIN can be small enough to turn myopic voting into

optimal; conversely, the expectation of myopic voting in the future can support the belief that

REMAIN today leads to LEAVE soon.

In Case ii, a myopic equilibrium exists for the simple majority rule, but it can be avoided by

using a sufficiently large supermajority rule. Intuitively, a large enough supermajority leads to a

later adoption of LEAVE, and a belief that REMAIN today leads to LEAVE in the near future

cannot be supported. While the necessary supermajority may be large, smaller supermajorities

are still useful since they improve the policy induced by the welfare-inferior equilibrium. In

Case iii, the future is so important that, even under the simple majority rule, the belief about

myopic voting in the future does not rationalize myopic voting today.

Example. In Case i, the implementability conditions look like those for δ = 0.8 and in Case ii

like those for δ = 0.9 in Figure Ia;11 in Case iii, the shape of ∆(p) is similar to that in Case ii,

but ∆(p) is so steep that it exceeds 1
2

already at p = 1
2
. Consequently, the gray correspondence

and the black curve do not intersect for p < 1. Figure II illustrates the δ-intervals where the

three cases apply. If γ is close enough to 1, then Case iii never applies for δ ∈ (0, 1), i.e.,

δM ≥ 1 is possible.

11The figure shows that a third equilibrium exists in Case ii if κ < ∆−1( 12 ). In this equilibrium, LEAVE-
winners vote only with a certain probability for LEAVE, and an intermediate cutoff policy is implemented.
This renders this equilibrium welfare-superior relative to the welfare-inferior pure strategy equilibrium, but
welfare-inferior relative to the welfare-optimal pure strategy equilibrium. Also this equilibrium ceases to exist
if a sufficiently large supermajority rule is used.
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γ0

0.5

1

δ

Figure II: δ-regions in Proposition 1 for power distribution functions

Corollary 1. There exist REMAIN-friendly environments such that, for all δ ∈ (0, 1), either

Case i or Case ii of Proposition 1 applies. For such environments, a policy is implementable

by the simple majority rule that leads to a welfare loss relative to the policy implemented by the

optimal supermajority rule, VR(p
∗)− VR(

1
2
), that grows without bound as δ → 1.

In LEAVE-friendly and in neutral environments there always exist circumstances under

which it is optimal to LEAVE. Supermajority rules are then necessary to incorporate the option

value of REMAIN.

Proposition 2. Consider a LEAVE-friendly or neutral environment.

Case i: δ ∈ (0, 1
2p̄
). For all κ ∈ [1

2
, 1), κ-majority voting uniquely implements cutoff policy κ.

Only the supermajority rule κ = p∗ implements the optimal policy.

Case ii: δ ∈ ( 1
2p̄
, 1). Then, ∆−1(−1

2
) ∈ (p∗, 1). For all κ ∈ [1

2
,∆−1(−1

2
)], κ-majority vot-

ing uniquely implements cutoff policy κ. For all κ ∈ (∆−1(−1
2
), 1), κ-majority voting

uniquely implements cutoff policy ∆−1(−1
2
) ∈ (p∗, 1). Only the supermajority rule κ = p∗

implements the optimal policy.

Example. In Case i of Proposition 2, the implementability conditions look like those for δ = 0.8

and in Case ii like those for δ = 0.9 in Figure Ib. Observe that ∆(p) is negative if p is close

enough to 1.

14



A qualitative difference relative to Case i in Proposition 1 occurs only if the future is very

important, and if a supermajority rule that is sufficiently much larger than the optimal rule is

used. Then, although LEAVE is likely to be individually (and socially) optimal in the future,

agents expect that it will take long until LEAVE is chosen after REMAIN. This gives LEAVE-

losers an incentive to vote for LEAVE. In the unique equilibrium, each LEAVE-loser votes

with a certain probability for LEAVE, limiting the welfare consequences of choosing too large

a supermajority rule:

Corollary 2. In any LEAVE-friendly environment, a larger than optimal supermajority rule

leads to a welfare loss that converges to a value smaller than 1 as δ → 1.

The Corollaries 1 and 2 point to an asymmetry in the welfare costs resulting from too low

and too high supermajority rules. A too low supermajority can have much higher costs.

Fixing the voting rules before knowing details. Voting rules that are used for impor-

tant decisions are not supposed to change often. Suppose there is an initial stage in which the

planner fixes the majority rule κ while she only knows that the distribution F will be drawn

from some class of distributions. Then, F is drawn and the κ-majority voting game that we

analyzed in this section is played. Because of the general optimality of some supermajority rule

in our base model, some supermajority rule will maximize the ex ante expected welfare in the

extended model.

Binary nature and normalization of stage payoffs. Our analysis relied on two as-

sumptions: The stage payoff from LEAVE was binary (our extreme notion of polarization) and

the two possible realizations were equidistant from the stage payoff from REMAIN.

Without equidistant payoffs, sub- and supermajority rules can be optimal in the benchmark

case. Since submajorities are typically not feasible for political reasons, deciding by simple

majority is the best feasible option if the planner prefers a submajority rule. Our results

translate easily to a setting with binary, non-equidistant payoffs: The planner’s preference for

a supermajority rule translates into a preference for a majority rule that is higher than the

majority she prefers in the benchmark case.
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Stage payoffs need not to be binary, but polarization is crucial for our results. Intuitively,

our analysis applies when the median agent prefers “more extreme” decisions than the planner.

We explain this in more detail in Extension I in Appendix A.

Inter-temporal correlations. The assumption of uncorrelated short-term and long-term

payoffs simplified our analysis. It was responsible for all voters and the social planner assessing

the future effects of any policy in the same way. Supermajority rules were useful to improve

the decisions that result from myopic voting behavior or to avoid that agents have incentives to

vote myopically in the first place. Intuitively, inter-temporal correlations increase the agents’

incentives to vote myopically and thus ceteris paribus (i.e., if they are introduced in a way

that does not alter optimal policy) render supermajority rules even more important:12 In

environments where under the simple majority rule a welfare-optimal equilibrium coexists with

a welfare-inferior equilibrium in our base model, the welfare-inferior equilibrium can become

the unique equilibrium. We discuss this in more detail in Extension II in Appendix A.

5. Majority Voting with Two-Sided Irreversible Decisions

In his “unfinished business” quote which we referred to in the introduction, Nigel Farage

warned that he would fight for a second referendum if the REMAIN campaign won by a narrow

margin. While this quote highlights the reversibility of REMAIN, it suggests at the same time

that REMAIN may be permanent if it wins by a sufficiently large margin. If this was the game,

how would the agents’ voting and the planner’s design incentives change?13

Voting mechanism. Consider the game where the decision process ends if either LEAVE

or REMAIN gains a κ-majority, κ ∈ (1
2
, 1). The decision is LEAVE (L) if the mass of LEAVE-

votes lt is at least κ, and it is REMAIN FOREVER (R∞) if lt is at most 1−κ; if lt ∈ (1−κ, κ),

the decision is REMAIN (for now) with a new vote in the next period (R). We call this

mechanism two-sided κ-majority voting.14

12Note that the ceteris paribus qualifier excludes the special case where individual stage payoffs are perfectly
correlated over time. If stage payoffs are persistent, doing whatever the majority prefers from a short-term
perspective is socially optimal and the simple majority rule uniquely implements the optimal policy.

13We thank an anonymous referee for pointing out this interpretation of the present voting game.
14A related mechanism is used in papal enclaves: Voting is repeated until a candidate obtains a certain
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We require, for convenience, that the same supermajority makes either decision permanent.

In practice, the supermajority required to end the process after REMAIN is exogenous, whereas

the supermajority required for LEAVE is more of a design element. Our qualitative results in

this section rely only on the fact that REMAIN can also become permanent, on the existence

(but not the size) of a margin where the result is considered “too close” and where a new vote

is triggered, and on the majority required for LEAVE.15

Generalization of the equilibrium notion. Two scenarios where an agent can be pivotal

now arise: he can be pivotal for LEAVE and for REMAIN reaching the κ-majority. In the

former case, he effectively decides between LEAVE and REMAIN, whereas in the latter case,

he effectively decides between REMAIN (by voting for LEAVE) and REMAIN FOREVER (by

voting for REMAIN).

Intuitively, an agent’s voting incentives should depend on the probability with which he

believes to be pivotal for LEAVE reaching the κ-majority conditional on being pivotal for

either LEAVE or REMAIN reaching the κ-majority. Reasonable equilibrium beliefs should in

turn depend on how an agent expects the other agents to vote and thus on the probability

with that each other agent is a LEAVE-winner, pt. In Appendix B, we apply the consistency

notion from Kreps and Wilson (1982) to the version of our model with a large finite electorate

in order to motivate reasonable beliefs in our model with a continuum electorate. Intuitively,

this notion implies that if an agent expects that, for given pt, each other agent is more likely to

vote for LEAVE (REMAIN), then, conditional on being pivotal, he believes with probability 1

(with probability 0) to be pivotal for whether LEAVE reaches the κ-majority.

The current mass of LEAVE-winners pt is payoff-relevant under two-sided majority voting.

Let λ(πi
t, pt) denote the probability with which an agent of type πi

t ∈ {0, 1} votes for LEAVE

given pt. A Markov strategy is then described by (λ(0, pt), λ(1, pt)). Let µ(pt) describe the

probability with which a voter believes to be pivotal for LEAVE reaching the κ-majority when

supermajority. If no candidate is elected in an initial phase, there are runoff elections between the candidates
who received the most votes until one of them obtains a two-thirds majority.

15In particular, our analysis extends to the case where LEAVE requires a simple majority and REMAIN
becomes permanent if it reaches a certain supermajority.
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the current mass of LEAVE-winners is pt (conditional on being pivotal). The belief system µ(pt)

is consistent with the Markov strategy (λ(0, pt), λ(1, pt)) if, for all pt, the following conditions

hold: 
µ(pt) = 1 if lt > 1

2

µ(pt) ∈ [0, 1] if lt = 1
2

µ(pt) = 0 if lt < 1
2

with lt = ptλ(1, pt) + (1− pt)λ(0, pt). (8)

We employ the following extended equilibrium notion: The Markov strategy (λ(0, pt), λ(1, pt))

together with the belief system µ(pt) forms an equilibrium if (i) given the belief system, the

Markov strategy is optimal under pivotal voting for the continuation values it generates, and

(ii) the belief system is consistent with the Markov strategy.16

Equilibrium Analysis. In contrast to majority voting, an equilibrium must now im-

plement the optimal policy if it is optimal to never LEAVE, and if the future is sufficiently

important:

Proposition 3. Let δTM ≡ (1+F (1/2)(1−2p̄))−1. Suppose that the environment is REMAIN-

friendly which implies δTM ∈ (δ∗,min{δM , 1}) and let δ > δTM . Then, for all κ, two-sided

κ-majority voting uniquely implements the optimal policy.

An intuition for the qualitative difference to (one-sided) κ-majority voting is as follows:

Assume, by contradiction, that there exists an equilibrium of two-sided κ-majority voting where

LEAVE is chosen with positive probability. For all pt where LEAVE is chosen, belief consistency

implies that each agent believes to be pivotal for LEAVE reaching the κ-majority. An agent

effectively decides then between LEAVE and REMAIN, i.e., he faces a trade-off that is like

that under (one-sided) κ-majority voting: LEAVE-losers have a strict incentive to vote for

REMAIN, but LEAVE-winners can have an incentive to vote LEAVE if they expect the future

consequences of REMAIN and LEAVE to be similar.

However, since LEAVE-losers vote REMAIN for any pt and for any belief, the 50%-majority

will be missed at least in periods where a majority of agents are LEAVE-losers. This is where

16The extended equilibrium notion reduces to our original equilibrium notion for majority voting. The belief
system is trivial for this mechanism since there is always only a single event in which the agent is pivotal.
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Figure III: The equilibrium behind Proposition 4 [γ = 3
4 , δ = 0.77, κ = p∗]

the contrast to normal majority voting kicks in. For such periods, consistency of beliefs implies

that each agent believes to be pivotal for REMAIN, or for REMAIN FOREVER. As all agents

prefer REMAIN FOREVER over REMAIN if they believe that REMAIN leads to subopti-

mal decisions in the future, REMAIN eventually leads with a probability of at least F (1
2
) to

REMAIN FOREVER. This drives a wedge between individual assessments of the future con-

sequences of REMAIN and LEAVE. If the future is sufficiently important, this wedge is large

enough, and LEAVE-winners always prefer REMAIN over LEAVE, contradicting the choice of

LEAVE in some periods.

If it is socially optimal to sometimes LEAVE, the optimal policy can be implemented by

one-sided and by two-sided supermajority voting, but doing so requires fine-tuning. The same

supermajority rule is optimal in both cases:

Proposition 4. Let δ∗ as introduced in (2): δ∗ = 1
2(1−p̄)

. If δ < δ∗, two-sided p∗-majority

voting implements the optimal policy.

Crucial for the implementation of the optimal policy is that REMAIN FOREVER is never

chosen on the equilibrium path. An intuition for how this property arises is as follows: Under

the assumption that future decisions are socially optimal, all agents prefer REMAIN over

REMAIN FOREVER, but only LEAVE-winners prefer LEAVE over REMAIN. Each LEAVE-

winner always votes for LEAVE, whereas the voting incentives of a LEAVE-loser depend on the
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belief µ(pt). If pt < 1
2

and if the voting behavior of LEAVE-losers is such that lt = 1
2
, any belief

is consistent with the voting behavior. Since a LEAVE-loser prefers REMAIN over REMAIN

FOREVER, and prefers REMAIN over LEAVE, there exists an intermediate belief µ′ ∈ (0, 1)

under which such an agent is indeed indifferent between voting for REMAIN and for LEAVE,

rendering mixing optimal. Conversely, mixing with the right probability leads to lt =
1
2
. Since

this means that REMAIN always misses the κ-majority, we obtain the desired property. If

pt >
1
2
, a LEAVE-loser believes to be pivotal for LEAVE reaching the κ-majority. Voting for

REMAIN is optimal for the same reasons as under normal κ-majority voting. This means that

LEAVE obtains the κ-majority only if pt ≥ κ and that the optimal policy is implemented for

κ = p∗. Figure III illustrates the equilibrium behind Proposition 4.

Two-sided p∗-majority voting does not uniquely implement the optimal policy under the

assumptions of Proposition 4. There exist additional equilibria where agents are indifferent

between REMAIN and REMAIN FOREVER. In such an equilibrium, an agent believes that he

is never pivotal for LEAVE reaching the κ-majority (conditional on being pivotal), and LEAVE

is never chosen on the equilibrium path. Yet the multiplicity of equilibria in this context does

not pose a real economic problem. If we consider the version of the model with a large finite

electorate, and if we introduce an arbitrarily small, exogenous probability with which an agent

votes myopically, equilibria where LEAVE is never chosen cease to exist.

In environments where it is sometimes optimal to LEAVE, fine-tuning matters and the

role of the supermajority rule is exactly as under (one-sided) majority voting if agents play

the responsive equilibrium that is behind Proposition 4. An important difference is that, in

environments where it is socially optimal to REMAIN FOREVER and where the future is

sufficiently important, the socially optimal policy is uniquely implemented without fine-tuning

(Proposition 3). As a consequence, the large asymmetry in the potential welfare costs from non-

optimal rules that we observed for (one-sided) majority voting does not occur under two-sided

majority voting. The majority requirement is less important.
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6. Conclusion

We studied two voting games where aggregate opinions fluctuate over time. In the first

game, one alternative (LEAVE) is irreversible whereas the other (REMAIN) is reversible. In

the second, REMAIN also becomes permanent as soon as it wins by a sufficiently large margin.

In applications, the potential permanence of REMAIN may be only implicit. While we framed

our analysis in terms of Brexit, it applies to other collective decision problems, such as long-

term infrastructure projects where preferences may change over time, e.g., the decision to exit

nuclear energy, to build a dam, or to develop land.

Our analysis suggests two roles for supermajority voting rules in the game where only

LEAVE is permanent: such rules reflect the option value that comes with REMAIN when

agents vote myopically and, in environments where LEAVE is likely to have devastating wel-

fare consequences, they can prevent myopic voting behavior. We also find that a too small

supermajority can have a much higher welfare cost than a too large supermajority.

In the game where both decisions can become permanent, the second role of supermajority

rules disappears and choosing a rather high supermajority to be “on the safe side” becomes less

important. Institutional innovations that transform the first game into the second game can be

useful. In particular, explicitly using two-sided majority voting can make sense in environments

where an implicit commitment to REMAIN does not automatically occur when REMAIN wins

by a large margin. In addition, two-sided supermajority voting may be politically easier to

implement because it treats the alternatives more symmetrically. On the downside, it requires

that a commitment to REMAIN is in principle possible.

Choices among more alternatives would call for new kinds of mechanisms: for example higher

majorities may be necessary for more extreme options, or decisions may be made sequentially

(e.g. about whether and how to exit).17 Another interesting extension would be to embed the

problem into a framework where elected political parties negotiate the terms and implement

the decision (this is similar to Alesina and Tabellini (1990) and Grüner (2017) who look at

17See Erlenmaier and Gersbach (2001) and Gershkov et al. (2017) for the analysis of related mechanisms in
static frameworks.
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government spending). Finally, one could also introduce learning about various aspects of the

environment.18

Appendix A. Extensions

Extension I: Less Polarization

We assumed in our base model that an agent’s stage payoff from LEAVE can take only two

values, πi
t = 1 and πi

t = 0. The electorate was polarized in the sense that the median agent’s

payoff was 1 for pt >
1
2

and 0 for pt <
1
2
.

We now relax the assumption of a completely polarized electorate in two steps: Firstly, the

mass of LEAVE-winners is now distributed on the interval [α, 1−α] with α ∈ (0, 1
2
). Secondly,

we introduce unpolarized agents with intermediate stage payoffs πi
t ∈ [0, 1] such that the average

stage payoff from LEAVE across agents, pt, does not change. This is done as follows: suppose

that, conditional on pt, πi
t is 1 with probability pt − α, 0 with probability 1 − pt − α, and it

is drawn with probability 2α according to a c.d.f G with a p.d.f g that is symmetric around 1
2

and has support [0, 1]. Everything else stays as in our base model. The electorate is completely

polarized for α = 0 and it converges to an unpolarized electorate as α → 1
2
.

Consider κ-majority voting. A (1−κ)-fraction of agents can enforce REMAIN. That is, the

decision is effectively taken by the (1− κ)-quantile agent. Because of our continuum electorate

assumption, this agent’s stage payoff from LEAVE is a deterministic function of pt. We denote

the (1− κ)-quantile agent’s stage payoff by π(1−κ)(pt). See Appendix B for a derivation of the

functional form of π(1−κ). The equilibrium behavior follows from comparing the (1−κ)-quantile

agent’s advantage of LEAVE in the current period, π(1−κ)(pt) − 1
2
, with the future advantage

of REMAIN.

Only cutoff policies can be induced.19 Each agent’s future advantage of REMAIN from

cutoff policy p is still ∆(p) as defined in equation (4). It implies now that ∆(p) is piecewise

constant on (−∞, α] and on [1 − α,∞). An interior cutoff p ∈ (α, 1 − α) is implementable if

18See, for example, Strulovici (2010) and Chan et al. (2018) for the effects of learning about the environment
in dynamic, collective decision problems.

19This follows from the fact that, as in our base model, π(1−κ)(pt) is non-decreasing in pt, and continuation
values do not depend on pt as Markov strategies condition only πi

t.
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π(1−κ)(p) − 1
2
= ∆(p). For the implementability of non-interior cutoffs we obtain conditions

that are analogous to those in our base model. Since π(1−κ)(pt) is weakly decreasing in κ, the

majority rule κ serves as an instrument for increasing the induced cutoff by making the pivotal

agent less eager to LEAVE. This allows us to give a graphical intuition for equilibrium behavior

and for the relations to our base model.

Example 1: Unpolarized agents with uniformly distributed stage payoffs. Sup-

pose that g(πi
t) = 1. The black curves in Figure IV display ∆(p) in a REMAIN-friendly

environment for various discount factors.20 All cutoff policies p such that ∆(p) falls into the

gray correspondence in the left panel (the right panel) are implementable by the simple major-

ity rule (by a supermajority rule with κ ≈ 0.59). The optimal policy p∗ is still determined by

the unique intersection of p− 1
2

and ∆(p).21 The black dot in each panel indicates (p∗,∆∗).22

Suppose first that δ is sufficiently small such that ∆(p) ∈ [0, 1
2
) for all p (Figure IVa). An

interior cutoff p∗ ∈ (1
2
, 1−α) is then optimal. Since π(1/2)(p)− 1

2
> p− 1

2
for all p ∈ (1

2
, 1−α], the

simple majority rule uniquely implements a cutoff that is too small from a social perspective

(see the left panel), whereas the right supermajority rule uniquely implements the optimal

policy (see the right panel).

Suppose next that δ is large enough such that ∆(1 − α) > 1
2

but small enough such that

the simple majority rule gives rise to multiple equilibria (Figure IVb). It is then possible to

uniquely implement the optimal policy by choosing a sufficiently large supermajority rule (as

displayed in the right panel).

Finally, for very large δ (see Figure IVc) it can happen that the majority rule does not

matter. The simple majority rule and any supermajority rule uniquely implement then the

optimal policy.

Qualitatively, the three cases and the role supermajority rules play in these cases are analo-

gous to the three cases in Proposition 1.

20The effects in a LEAVE-friendly environment are essentially analogous to those that we will explain for the
REMAIN-friendly environment and a sufficiently small discount factor (see Figure IVa).

21We derive this property for our base model in Lemma B.1 in Appendix B.
22In Figure IVc, this dot falls outside the displayed area.
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Figure IV: Implementability conditions under κ-majority voting in the model with less polarization
[α = 1

5 , F (pt) = F3/4(
pt−α
1−2α ), g(πi

t) = 1]

Implementable polices: Policies where the gray correspondence and the black curve intersects.
All cutoffs p > 1− α, and all cutoffs p ≤ α describe the same policy, respectively.
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In Example 1, for all pt > 1
2
, the median agent is more eager to LEAVE than the planner:

he assigns to all pt ∈ (1
2
, 1− α] a higher current advantage of LEAVE; i.e.,

π(1/2)(pt)− 1
2
> pt − 1

2
. (A.1)

In our base model, this condition was implied by our extreme notion of polarization: The

median agent had a stage payoff of 1 whenever the mass of LEAVE-winners exceeded 1
2
. Any

weaker notion of polarization that implies (A.1) for pt ∈ (1
2
, 1−α] is sufficient for obtaining the

general optimality of a supermajority rule. Part (a) of the subsequent Lemma identifies such a

notion.

Lemma 3. (a) Let g be quasi-convex. Then, for all degrees of polarization and for all pt ∈

(1
2
, 1− α], the median agent is more eager to LEAVE than the planner.

(b) Let g be strictly quasi-concave. Then, if the degree of polarization is sufficiently low, there

exist pt ∈ (1
2
, 1−α] such that the planner is more eager to LEAVE than the median agent.

In Example 1, we discussed a boundary case: g was linear (i.e., it was quasi-convex and

quasi-concave, but not strictly quasi-concave). The subsequent example illustrates how our

results are affected if g is strictly quasi-concave.

Example 2: Unpolarized agents with stage payoffs that are distributed according

to a symmetric triangular distribution. Suppose that g(πi
t) = min{4πi

t, 4(1−πi
t)}. Figure

V shows how the median agent’s current advantage of LEAVE (solid curves) compares to that

of the planner (dotted curves) for four degrees of polarization in the electorate.

Figure Va shows that with 20% polarized agents the planner is always more eager to LEAVE

than the median agent. As a consequence, the simple majority rule is optimal as a corner

solution. With 40% polarized agents (Figure Vb), the planner is more eager to LEAVE for

small pt, but the median agent is more eager to LEAVE for large pt.

Finally, with 50% or more polarized agents, the median agent is, for all pt, more eager to

LEAVE than the planner (Figures Vc and Vd). The median agent’s stage payoff from LEAVE

behaves in all important respects like those in Example 1. This becomes particularly apparent
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Figure V: Advantage of LEAVE in the current period of the median agent and of the planner
[g(πi

t) = min{4πi
t, 4(1− πi

t)}]
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by comparing the solid gray curve in Figure Vd with that in the left panels of Figure IV. The

same reasoning as in our discussion of Example 1 applies. Specifically, a supermajority rule is

generally optimal, and equilibrium multiplicity can occur for the simple majority rule, but can

be avoided by choosing a sufficiently large supermajority rule.

Extension II: Inter-Temporal Correlations

In reality, today’s LEAVE-winners are more likely than today’s LEAVE-losers to be tomor-

row’s LEAVE-winners. To study voting in such scenarios, we introduce serial correlation of

individual stage payoffs in a simple way that does not affect how the mass of LEAVE-winners

fluctuates over time and thus leaves the optimal policy unchanged.

Let q1(pt−1, pt) (q0(pt−1, pt)) denote the probability with which a period t−1 LEAVE-winner

(LEAVE-loser) becomes a LEAVE-winner in the period t, conditional on pt−1 and pt. We impose

the following two assumptions:

Assumption 1. pt−1q1(pt−1, pt) + (1− pt−1)q0(pt−1, pt) = pt.

Assumption 2. q1(pt−1, pt) ≥ q0(pt−1, pt).

Assumption 1 implies that the mass of LEAVE-winners in period t is still described by pt.

Assumption 2 introduces our notion of positive serial correlation.

Consider κ-majority voting. Since the current mass of LEAVE-winners affects the updated

probability to be a LEAVE-winner in the next period, pt is in this version of the model payoff-

relevant. If all agents vote according to the Markov strategy λ(πi
t, pt), the decision is

d(pt) =


L if ptλ(1, pt) + (1− pt)λ(0, pt) ≥ κ

R if ptλ(1, pt) + (1− pt)λ(0, pt) < κ

. (A.2)

Consider the system of linear equations VL(π
i
t−1, pt−1) = E[πi

t + δVL(π
i
t, pt)|πi

t−1, pt−1]

VR(π
i
t−1, pt−1) = E[1d(pt)=L(π

i
t + δVL(π

i
t, pt)) + 1d(pt)=R(

1
2
+ δVR(π

i
t, pt))|πi

t−1, pt−1]
(A.3)

implied by policy (A.2). It possesses a unique solution. δVd(π
i
t, pt) describes the continuation

value of an agent of type πi
t from decision d ∈ {R,L}. The continuation values affect voting
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incentives only through the future advantage of REMAIN,

∆(πi
t, pt) ≡ δ(VR(π

i
t, pt)− VL(π

i
t, pt)).

A Markov strategy is optimal under pivotal voting if and only if it satisfies a condition that is

analogous to (7).

The future advantage of REMAIN is now a more complicated object than its analog in the

base model. Yet, the structure imposed by Assumptions 1 and 2 implies that there is a clear

relation between the values that this advantage assumes in both versions of the model:

Lemma 4. Fix any policy d(pt) and let ∆(πi
t, pt) be the future advantage of REMAIN generated

by d(pt). Then,

∆(1, pt) ≤ ∆ ≤ ∆(0, pt)

where ∆ is the future advantage of REMAIN implied by d(pt) in our base model.

Intuitively, the positive serial correlation reinforces incentives: Holding any expectation

about future decisions fixed, LEAVE-winners get more eager to vote for LEAVE, while LEAVE-

losers get more eager to vote for REMAIN. This has two immediate implications for the imple-

mentation and the implementability of cutoff policies:23

1) Whenever myopic voting is the unique equilibrium in our base model, it is the unique

equilibrium that implements a cutoff policy in the modified model. Put differently, in every

scenario where it is optimal to LEAVE under certain conditions, supermajority rules have the

same role as in our base model.

2) In scenarios where it is socially optimal to REMAIN forever, supermajority rules can

play an even bigger role. In our base model, the optimal policy was generally implementable

by the simple majority rule, but not necessarily uniquely implementable. In the equilibrium

that implements the optimal policy, all agents vote REMAIN irrespective of their short-term

incentives. Supermajority rules were only useful for improving upon the welfare-inferior equi-

23Because of the dependence of Markov strategies on pt, it is not immediately obvious that only cutoff policies
are implementable in our modified model. The analysis of our base model and Lemma 4 allows us thus only to
make statements about the implementation and implementability of cutoff policies.
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librium or for circumventing its existence. In the extended model, the stronger incentive of

LEAVE-winners to vote for LEAVE can render myopic voting the unique equilibrium that im-

plements a cutoff policy.24 The cutoff policy implemented by any supermajority rule improves

then welfare. Interestingly, by a reasoning like in Corollary 1, myopic voting can constitute

the unique equilibrium that implements a cutoff policy even if all agents agree that it would

be better to REMAIN forever, and even if they perceive the long-term consequences of the

decision as arbitrarily more important than its short-term consequences.

Appendix B. Proofs

Proofs for Section 3

Proof of Lemma 1

Equation (1) is equivalent to ϕ(p∗, δ) = 0, where the auxiliary function ϕ : R × (0, 1) → R

is defined by

ϕ(p, δ) ≡ p− 1
2
− δ

∫ p

0

(p− pt)dF (pt). (B.1)

For fixed δ, p∗ is the unique root of ϕ(p, δ). Two properties of ϕ(p, δ) are important. Firstly,

since ϕp(p, δ) = 1 − δF (p) > 0, we obtain for fixed δ that ϕ(p, δ) < 0 implies p∗ > p and that

ϕ(p, δ) > 0 implies p∗ < p. Secondly, p∗ is strictly increasing in δ since ϕ(0, δ) = −1
2

for all δ,

and since ϕp(p, δ) > 0 and ϕpδ(p, δ) < 0 for p > 0.

Because

ϕ(1
2
, δ) = −δ

∫ 1/2

0

(1
2
− pt)dF (pt) < 0,

we obtain p∗ > 1
2
. Since ϕ(1, δ) = 1− 1

2
− δ(1− p̄), we obtain that ϕ(1, δ) > 0 for p̄ ≥ 1

2
. Hence,

by the Intermediate Value Theorem, p∗ < 1 for any LEAVE-friendly or neutral environment. If

the environment is REMAIN-friendly, the sign of ϕ(1, δ) depends on the discount factor. Since

δ = 1
2(1−p̄)

solves ϕ(1, δ) = 0, we obtain the wished result.

24An example can be constructed in the following way: Fix a REMAIN-friendly environment. For δ = δ∗ + ϵ
with ϵ > 0, ∆ is larger than 1

2 and converges to 1
2 as ϵ → 0. By choosing the function q1 that determines the

serial correlation such that ∆(1, pt) is bounded away from ∆ as ϵ → 0, we obtain the result.
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Proofs for Section 4

Proof of Lemma 2

Suppose that (λ(0), λ(1)) constitutes an equilibrium under κ-majority voting. By the con-

ditions in (7), λ(1) ≥ λ(0). Since this implies that ptλ(1)+ (1− pt)λ(0) is non-decreasing in pt,

(5) defines a cutoff policy.

Suppose d(pt) is a cutoff policy with cutoff p. By using the structure of this policy and

E[πi
t|pt] = pt in system (6), system (6) simplifies to the system (3). Hence, ∆ = ∆(p).

Auxiliary Results on the Shape of ∆(p)

We next establish the main properties of ∆(p).

Lemma B.1. (a) ∆(p) ≥ ∆(p′) if and only if the planner weakly prefers cutoff p over cutoff

p′.

(b) ∆(p) is piecewise constant on (−∞, 0] and on [1,∞). On the interval [0, 1], ∆(p) is

single-peaked with peak at p∗ if p∗ < 1, and strictly increasing if p∗ ≥ 1.

(c) ∆(p∗) = p∗ − 1
2
. Moreover, ∆(p) > p− 1

2
if p < p∗ and ∆(p) < p− 1

2
if p > p∗.

Proof. (a) The planner’s ex-ante expected payoff from cutoff policy p is VR(p). Since the

function VL does not depend on p, ∆(p) is a positive linear transformation of VR(p).

(b) It is obvious from condition (4) that ∆ is continuous on R and piecewise constant on

(−∞, 0] and on [1,∞). For all p ∈ (0, 1), we have

∆′(p) =
δ2f(p)

(1− δF (p))2

∫ p

0

(1
2
− pt)dF (pt) +

δ

1− δF (p)
(1
2
− p)f(p)

= − δf(p)

(1− δF (p))2

(
− δ

∫ p

0

(1
2
− pt)dF (pt)− (1− δF (p))(1

2
− p)

)
= − δf(p)

(1− δF (p))2

(
p− 1

2
− δ

∫ p

0

(p− pt)dF (pt)

)
(B.1)
= − δf(p)

(1− δF (p))2
ϕ(p, δ).

By the reasoning in the proof of Lemma 1, for any fixed δ, ϕ(p, δ) is strictly increasing in p with

a root at p∗. If p∗ ≥ 1, we obtain ∆′(p) > 0 for all p ∈ (0, 1). If p∗ < 1, we obtain ∆′(p) > 0 for

p ∈ (0, p∗), and ∆′(p) < 0 for p ∈ (p∗, 1).
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(c) We have

∆(p)− (p− 1
2
)

(4)
=

1

1− δF (p)

(
δ

∫ p

0

(1
2
− pt)dF (pt)− (1− δF (p))(p− 1

2
)

)
= − 1

1− δF (p)

(
p− 1

2
− δ

∫ p

0

(p− pt)dF (pt)

)
(B.1)
= − 1

1− δF (p)
ϕ(p, δ).

We obtain ∆(p) > p− 1
2

for p < p∗, ∆(p∗) = p∗ − 1
2
, and ∆(p) < p− 1

2
for p > p∗.

Lemma B.2. Fix any REMAIN-friendly environment.

(a) Assume that δ < δ∗. Then ∆(p) ∈ [0, 1
2
) for all p.

(b) Assume that δ > δ∗. Then there exists a unique value ∆−1(1
2
) ∈ [1

2
, 1) for δ ∈ (δ∗, δM ]

and a unique value ∆−1(1
2
) ∈ (0, 1

2
) for δ > δM . Moreover, ∆(p) ∈ [0, 1

2
) for p < ∆−1(1

2
),

and ∆(p) > 1
2

for p > ∆−1(1
2
).

Proof. We divide the argument in three steps. (a) follows from Steps 1 and 2 and (b) from

Steps 1 and 3.

Step 1. By Lemma B.1 (b), minp ∆(p) = min{∆(0),∆(1)}. Since ∆(0) = 0, ∆(1) =

δ
1−δ

(1
2
− p̄), and p̄ < 1

2
we obtain that minp∆(p) = 0 in any REMAIN-friendly environment.

Step 2. Suppose that δ < δ∗. By Lemma B.1 (a), ∆(p) ≤ ∆(p∗). Since by Lemma B.1

(c), ∆(p∗) = p∗ − 1
2
, and by Lemma 1, p∗ < 1, ∆(p) < 1

2
.

Step 3. Suppose that δ > δ∗. Then, p∗ > 1 by Lemma 1. By Lemma B.1 (b) and (c),

this implies that ∆(p∗) > 1
2
, and that ∆(p) is strictly increasing on [0, 1], with ∆(1) = ∆(p∗).

Since ∆(0) = 0 and since ∆(p) is continuous, we can apply the Intermediate Value Theorem

to obtain a unique value ∆−1(1
2
) ∈ (0, 1). Since ∆(p) is strictly increasing on [0, 1] and weakly

increasing on R, ∆(p) < 1
2

for p < ∆−1(1
2
) and ∆(p) > 1

2
for p > ∆−1(1

2
). Finally,

∆−1(1
2
) < 1

2
⇔ ∆(1

2
) > 1

2
⇔ δ

1− δF (1
2
)

∫ 1/2

0

(1
2
− pt)dF (pt) >

1
2

⇔ δ2

∫ 1/2

0

(1
2
− pt)dF (pt) > 1− δF (1

2
)

⇔ δ2

∫ 1/2

0

(1− pt)dF (pt) > 1 ⇔ δ > δM .
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Lemma B.3. Fix any LEAVE-friendly or neutral environment.

(a) Assume that δ < 1
2p̄

. Then ∆(p) ∈ (−1
2
, 1
2
) for all p.

(b) Assume that δ > 1
2p̄

. Then there exists a unique value ∆−1(−1
2
) ∈ (p∗, 1). Moreover,

∆(p) ∈ (−1
2
, 1
2
) for p < ∆−1(−1

2
) and ∆(p) < −1

2
for p > ∆−1(−1

2
).

Proof. (a) follows from Steps 1 and 2.1, (b) from Steps 1 and 2.2.

Step 1. By Lemma B.1 (a), ∆(p) ≤ ∆(p∗). Since ∆(p∗) = p∗ − 1
2
, and since, by Lemma 1,

p∗ ∈ (1
2
, 1) for all LEAVE-friendly or neutral environments, ∆(p) < 1

2
.

Step 2. By Lemma B.1 (b), minp∆(p) = min{∆(0),∆(1)}. Since (4) implies ∆(0) = 0 and

∆(1) = δ
1−δ

(1
2
− p̄), and since p̄ ≥ 1

2
in any LEAVE-friendly or neutral environment, we obtain

that minp∆(p) = ∆(1). Thus,

min
p

∆(p)− (−1
2
) =

δ

1− δ
(1
2
− p̄)− (−1

2
) =

p̄

1− δ
(
1

2p̄
− δ). (B.2)

Step 2.1. Suppose that δ < 1
2p̄

. Then, (B.2) implies ∆(p) > −1
2
.

Step 2.2. Suppose that δ > 1
2p̄

. Then, (B.2) and minp ∆(p) = ∆(1) imply ∆(1) < −1
2
. In

Step 1, we have already observed that ∆(p∗) ∈ (0, 1
2
) with p∗ ∈ (0, 1). Since ∆(p) is continuous,

we can apply the Intermediate Value Theorem to obtain a unique value ∆−1(−1
2
) ∈ (p∗, 1).

Furthermore, it follows from Lemma B.1 (b) that ∆(p) > −1
2

for p < ∆−1(−1
2
) and ∆(p) < −1

2

for p > ∆−1(−1
2
).

Proof of Proposition 1

Note that

δ∗ =
1

2
∫ 1

0
(1− pt)dF (pt)

< δM =
1

2
∫ 1/2

0
(1− pt)dF (pt)

.

Case i: δ ∈ (0, δ∗). Suppose that (λ(0), λ(1)) constitutes an equilibrium. By Lemma 2,

∆ = ∆(p) for some p. Since, by Lemma B.2 (a) ∆(p) ∈ [0, 1
2
) for all p, (λ(0), λ(1)) is by (7)

optimal for the ∆ it implies if and only if (λ(0), λ(1)) = (0, 1). In other words, myopic voting

constitutes the unique equilibrium. Since, by (5), myopic voting induces cutoff policy κ, we

obtain the result.
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Case ii and iii: δ ∈ (δ∗, 1). The subsequent Steps 1–3 do not differentiate between Case

ii (δ ≤ δM) and Case iii (δ > δM). However, by Lemma B.2 (b), the set [1
2
,∆−1(1

2
)] is empty in

Case iii while ∆−1(1
2
) ∈ [1

2
, 1) in Case ii.

Step 1: For all κ, always voting for REMAIN, (λ(0), λ(1)) = (0, 0), constitutes an equilib-

rium. By (5), any cutoff policy p′ > 1 describes the policy implemented by (λ(0), λ(1)) = (0, 0).

Fix any such p′. By Lemma 2, ∆ = ∆(p′). Since 1 < p′ and since ∆−1(1
2
) < 1 by Lemma B.2

(b), we obtain that ∆(p′) > 1
2
. By (7) this implies that (λ(0), λ(1)) = (0, 0) is optimal under

pivotality considerations for the ∆ it induces.

Step 2: If κ ∈ [1
2
,∆−1(1

2
)], myopic voting, (λ(0), λ(1)) = (0, 1), constitutes an equilibrium.

By (5), myopic voting induces cutoff policy p = κ. By Lemma 2, ∆ = ∆(κ). Since κ ≤ ∆−1(1
2
)

and Lemma B.2 (b) imply that ∆(κ) ∈ [0, 1
2
], we obtain by (7) that myopic voting is optimal

under pivotality considerations for the ∆ it induces.

Step 3: If κ ∈ (∆−1(1
2
), 1), the equilibrium from Step 1 is unique. Assume to the contrary

that (λ(0), λ(1)) ̸= (0, 0) constitutes a further equilibrium. By Lemma 2, ∆ = ∆(p) for some

p. Since ∆(p) ≥ 0 by Lemma B.2 (b), λ(0) = 0. This implies p ≥ κ by (5). However, since

κ > ∆−1(1
2
) and Lemma B.2 (b) imply ∆(p) > 1

2
, pivotality implies also λ(1) = 0 by (7),

yielding a contradiction.

Step 4: The statements about the optimal majority rule. By Lemma 1, it is optimal to never

LEAVE for δ > δ∗. By Step 1, the optimal policy is implementable by κ-majority voting with

any κ. By Steps 2 and 3, the optimal policy is uniquely implemented by κ-majority voting only

if κ > ∆−1(1
2
). Recall that this condition is satisfied for all κ ∈ [1

2
, 1) if δ > δM .

Proof of Corollary 1

Note that δM ≥ 1 is equivalent to

2

∫ 1/2

0

(1− pt)f(pt)dpt ≤ 1. (B.3)
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Consider REMAIN-friendly power distribution functions Fγ, γ ∈ (0, 1). Since F ′
γ(pt) =

1
γ
(1 −

pt)
1
γ
−1, the left-hand side of (B.3) can be written as

2

∫ 1/2

0

1
γ
(1− pt)

1
γ dpt = 2

[
−1

1 + γ
(1− pt)

1
γ
+1

]pt=1/2

pt=0

=
1

1 + γ
(2− (1

2
)

1
γ ).

Since this expression is continuous in γ and converges to 3
4

as γ → 1, we obtain that δM ≥ 1

for any γ sufficiently close to 1.

Suppose the environment is REMAIN-friendly and that δM ≥ 1. Then, by Proposition 1,

for any δ > δ∗, the cutoff policy 1
2

is implementable by the simple majority rule. By the same

Proposition, any sufficiently large supermajority rule uniquely implements the optimal policy

p∗ > 1. Hence, the simple majority rule can lead to a welfare loss of

VR(p
∗)− VR(

1
2
) = 1

δ
(∆(p∗)−∆(1

2
))

where the equality follows because VL(p
∗) = VL(

1
2
) by the irreversibility of LEAVE. For δ ≤ δM ,

Lemma B.2 (b) implies that ∆(1
2
) ≤ 1

2
. On the other hand, (4) and p∗ > 1 imply that

∆(p∗) = δ
1−δ

(1
2
− p̄). Since 1

2
− p̄ > 0 in any REMAIN-friendly environment, ∆(p∗) grows

without bound as δ → 1. Hence, VR(p
∗)− VR(

1
2
) grows without bound as δ → 1.

Proof of Proposition 2

Case i: δ ∈ (0, 1
2p̄
). Since, by Lemma B.3, this condition implies ∆(p) ∈ (−1

2
, 1
2
) for all p,

a reasoning analogous to that in Case i of Proposition 1 applies.

Case ii: δ ∈ ( 1
2p̄
, 1). We know that ∆−1(−1

2
) ∈ (p∗, 1) from Lemma B.3 (b). We show that

for all κ ∈ [1
2
, 1) a unique equilibrium exists and that the implemented policy is as asserted in

the Proposition.

Step 1: For all κ ∈ [1
2
,∆−1(−1

2
)], myopic voting, (λ(0), λ(1)) = (0, 1), constitutes an

equilibrium. By (5), myopic voting induces cutoff policy p = κ. By Lemma 2, ∆ = ∆(κ).

Lemma B.3 (b), δ > 1
2p̄

and κ ∈ [1
2
,∆−1(−1

2
)] imply ∆(κ) ∈ [−1

2
, 1
2
). Thus, by (7), myopic

voting is optimal under pivotality considerations for the ∆ it induces.

Step 2: For all κ ∈ [1
2
,∆−1(−1

2
)], no other equilibrium exists. Assume to the contrary

that (λ(0), λ(1)) ̸= (0, 1) constitutes a further equilibrium. By Lemma 2, ∆ = ∆(p) for some p.
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Since, by Lemma B.3 (b), ∆(p) < 1
2
, pivotality implies λ(1) = 1 by (7). Thus, λ(0) > 0 must be

true. By (5), λ(1) = 1 and λ(0) > 0 imply that a cutoff p < κ is induced. Since κ ≤ ∆−1(−1
2
)

by our supposition, p < ∆−1(−1
2
). Since this implies for δ > 1

2p̄
that ∆(p) > −1

2
by Lemma B.3

(b), only λ(0) = 0 is optimal under pivotality by (7), yielding a contradiction.
Step 3: For all κ ∈ (∆−1(−1

2
), 1),

(λ(0), λ(1)) = (κ−∆−1(−1/2)
1−∆−1(−1/2)

, 1)

constitutes an equilibrium. By (5), the strategy (κ−∆−1(−1/2)
1−∆−1(−1/2)

, 1) induces the cutoff policy

∆−1(−1
2
). By Lemma 2, ∆ = ∆(∆−1(−1

2
)) = −1

2
. Hence, by (7), (κ−∆−1(−1/2)

1−∆−1(−1/2)
, 1) is opti-

mal under pivotality for the ∆ it induces.

Step 4: For all κ ∈ (∆−1(−1
2
), 1), no other equilibrium exists. Assume to the contrary that

(λ(0), λ(1)) ̸= (κ−∆−1(−1/2)
1−∆−1(−1/2)

, 1)

constitutes a further equilibrium. By Lemma 2, ∆ = ∆(p) for some p. Since ∆(p) < 1
2

by

Lemma B.3 (b), pivotality considerations imply λ(1) = 1 by (7). Thus, λ(0) ̸= κ−∆−1(−1/2)
1−∆−1(−1/2)

. We

distinguish two cases:

Suppose first that λ(0) < κ−∆−1(−1/2)
1−∆−1(−1/2)

. Together with λ(1) = 1 and (5), this implies that a

cutoff p > ∆−1(−1
2
) is induced. By Lemma B.3 (b), this implies that ∆(p) < −1

2
for δ > 1

2p̄
.

Thus, by (7), only λ(0) = 1 is optimal under pivotality, yielding a contradiction.

Suppose next that λ(0) > κ−∆−1(−1/2)
1−∆−1(−1/2)

. Then a cutoff p < ∆−1(−1
2
) is induced, and only

λ(0) = 0 is optimal, yielding again a contradiction.

Proof of Corollary 2

Fix any LEAVE-friendly environment and consider δ > 1
2p̄

. By Proposition 2, a policy is

implementable by some majority rule κ if and only if it is a cutoff policy p ∈ [1
2
,∆−1(−1

2
)]. By

Lemma B.3 (b),

min
p∈[1/2,∆−1(−1/2)]

∆(p) = −1
2

and max
p∈[1/2,∆−1(−1/2)]

∆(p) < 1
2
.
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Since the welfare loss from cutoff policy p is

VR(p
∗)− VR(p) =

1
δ
(∆(p∗)−∆(p)),

the maximal welfare loss is strictly smaller than 1
δ
, and it is bounded by 1 for δ → 1.

Proofs for Section 5

Recall that in this section we consider the version of the model where votes can be for

REMAIN or for LEAVE, but where three decisions are possible in each period, LEAVE (L),

REMAIN (R) and REMAIN forever (R∞).

Sensible Beliefs under Voting by Two-Sided κ-majority voting

In our model with a continuum of agents, each pivotality event occurs with probability 0

and Bayes Law is not applicable. In order to obtain an understanding of what reasonable beliefs

are, we consider now the version of our model with a large, finite number of n agents, and we

derive how the Bayesian belief behaves in the limit. This will motivate our notion of sensible

beliefs in our model with a continuum of agents.

Let mL
n ≡ ⌈κn⌉−1 and mR

n ≡ ⌈(1−κ)n⌉−1. If mL
n other agents vote for LEAVE, i is pivotal

for LEAVE reaching the κ-majority; if mR
n others vote for LEAVE, he is pivotal for REMAIN

reaching the κ-majority. Suppose that agent i believes that each other agent votes for LEAVE

with probability k ∈ (0, 1). His Bayesian belief about the pivotality scenario is then µ = µn(k)

where

µn(k) ≡

(
n−1
mL

n

)
kmL

n (1− k)n−1−mL
n(

n−1
mR

n

)
kmR

n (1− k)n−1−mR
n +

(
n−1
mL

n

)
kmL

n (1− k)n−1−mL
n

. (B.4)

For k ∈ {0, 1}, we employ the consistency notion from Kreps and Wilson (1982): The belief

µn is consistent with the probability kn ∈ [0, 1] in the finite version of the model if there

exists a sequence (kn,τ )τ in (0, 1) with limτ→∞ kn,τ = kn such that limτ→∞ µn(kn,τ ) = µn. We

say that the limit belief µ is consistent with the limit probability k ∈ [0, 1] if there exists a

sequence of probabilities (kn)n in [0, 1] with limn→∞ kn = k and a sequence of beliefs (µn)n with

limn→∞ µn = µ such that, for all n, µn is consistent with kn in the finite version of the model.
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Lemma B.4. For all κ ∈ (1
2
, 1), the limit belief µ ∈ [0, 1] is consistent with the limit probability

k ∈ [0, 1] if, and only if,


µ = 1 if k > 1

2

µ ∈ [0, 1] if k = 1
2

µ = 0 if k < 1
2

.

Proof. For k ∈ (0, 1), we can rewrite (B.4) as

µn(k) =

(
n−1
mL

n

)(
n−1
mR

n

) ( k

1− k

)mL
n−mR

n

1 +

(
n−1
mL

n

)(
n−1
mR

n

) ( k

1− k

)mL
n−mR

n

=

(n− 1−mR
n )!

mL
n !

mR
n !

(n− 1−mL
n)!

((
k

1− k

)(mL
n−mR

n )/n
)n

1 +
(n− 1−mR

n )!

mL
n !

mR
n !

(n− 1−mL
n)!

((
k

1− k

)(mL
n−mR

n )/n
)n . (B.5)

Step 1: Only belief µn = 0 (µn = 1) is consistent with probability k = 0 (k = 1) in the finite

version of the model. Fix any n. Let (kn,τ )τ be any sequence in (0, 1) with limτ→∞ kn,τ = 0

(limτ→∞ kn,τ = 1). limτ→∞ µn(kn,τ ) = 0 (limτ→∞ µn(kn,τ ) = 1) immediately follows from (B.5).

Step 2: Implications of consistency of limit beliefs for probability sequences (kn)n with

kn = k for all n: k ∈ (0, 1
2
) implies limn→∞ µn(k) = 0, k = 1

2
implies limn→∞ µn(k) =

1
2
, and

k ∈ (1
2
, 1) implies limn→∞ µn(k) = 1. Fix any k ∈ (0, 1). We note that limn→∞

(n−1−mR
n )!

mL
n !

= 1,

limn→∞
mR

n !
(n−1−mL

n)!
= 1, and limn→∞

(
k

1−k

)(mL
n−mR

n )/n
=
(

k
1−k

)2κ−1. Since k ∈ (0, 1
2
) implies(

k
1−k

)2κ−1
< 1, we obtain from (B.5) that limn→∞ µn(k) = 0. Analogously, since k ∈ (1

2
, 1)

implies
(

k
1−k

)2κ−1
> 1, we obtain from (B.5) that limn→∞ µn(k) = 1. Finally, since k = 1

2

implies
(

k
1−k

)mL
n−mR

n = 1, we obtain from (B.5) that limn→∞ µn(k) =
1
2
.

Step 3: Implications of consistency of limit beliefs for probability sequences (kn)n.

Step 3.1: For all k ∈ [0, 1
2
) (k ∈ (1

2
, 1]), only the limit belief µ = 0 (µ = 1) is consistent with

the limit probability k. Let (kn)n be a sequence in [0, 1] with limn→∞ kn = k and let (µn)n be a

sequence in [0, 1] with limn→∞ µn = µ such that, for all n, belief µn is consistent with probability
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kn in the finite version of the model. It follows from Steps 1 and 2 that limn→∞ µn(kn) = 0 if

k < 1
2

and that limn→∞ µn(kn) = 1 if k > 1
2
.

Step 3.2: Any limit belief µ ∈ (0, 1) is consistent with the limit probability k = 1
2
. Since

µn(k) is strictly increasing and continuous in k with limk→0 µn(k) = 0 and limk→1 µn(k) = 1,

for any µ ∈ (0, 1), there exists by the Intermediate Value Theorem a unique value µ−1
n (µ).

Set kn = µ−1
n (µ) and µn = µn(kn). By construction, limn→∞ µn = µ. Moreover, by Step 2,

limn→∞ kn = 1
2
.

Step 3.3: Any limit belief µ ∈ {0, 1} is consistent with the limit probability k = 1
2
. Consider

kn = 1

1+n1/(mL
n−mR

n )
and µn = µn(kn). Then, since limn→∞ n1/(mL

n−mR
n ) = 1, limn→∞ kn = 1

2
.

Moreover,

µn ≤ 2

n
⇔ n− 2

n

(n− 1−mR
n )!

mL
n !

mR
n !

(n− 1−mL
n)!

(
kn

1− kn

)mL
n−mR

n

≤ 2

n

⇔ n− 2

n

(n− 1−mR
n )!

mL
n !

mR
n !

(n− 1−mL
n)!

1

n
≤ 2

n

⇔ n− 2

n

(n− 1−mR
n )!

mL
n !

mR
n !

(n− 1−mL
n)!

≤ 2. (B.6)

The first equivalence follows from plugging the definition of µn(kn) in (B.5) and from simplifying;

the second equivalence follows from using the definition of kn and simplifying. Since the left-

hand side of (B.6) converges to 1 as n → ∞, we have shown that the limit belief µ = 0 is

consistent with the limit probability k = 1
2
. A similar construction can be used to show that

the limit belief µ = 1 is consistent with the limit probability k = 1
2
.

Proof of Proposition 3

We first formally introduce the continuation values implied by a Markov strategy and the

meaning of optimality under pivotality considerations: If all agents vote according to the

Markov strategy (λ(0, pt), λ(1, pt)), the decision is

d(pt) =


L if lt ≥ κ

R if lt ∈ (1− κ, κ)

R∞ if lt ≤ 1− κ

with lt = ptλ(1, pt) + (1− pt)λ(0, pt). (B.7)
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Consider the system of linear equations
VL = E[πi

t + δVL]

VR = E[1d(pt)=L(π
i
t + δVL) + 1d(pt)=R(

1
2
+ δVR) + 1d(pt)=R∞(1

2
+ δVR∞)]

VR∞ = 1
2
+ δVR∞

(B.8)

that is implied by policy (B.7). It has a unique solution. δVd describes the continuation value

from decision d ∈ {R∞, R, L}, common to all agents.

(λ(0, pt), λ(1, pt)) is optimal under pivotal voting if and only if, for all πi
t ∈ {0, 1} and all

pt ∈ [0, 1], 

λ(πi
t, pt) = 1 if µ(pt)(πi

t + δVL) + (1− µ(pt))(
1
2
+ δVR)

> µ(pt)(
1
2
+ δVR) + (1− µ(pt))(

1
2
+ δVR∞)

λ(πi
t, pt) ∈ [0, 1] if µ(pt)(πi

t + δVL) + (1− µ(pt))(
1
2
+ δVR)

= µ(pt)(
1
2
+ δVR) + (1− µ(pt))(

1
2
+ δVR∞)

λ(πi
t, pt) = 0 if µ(pt)(πi

t + δVL) + (1− µ(pt))(
1
2
+ δVR)

< µ(pt)(
1
2
+ δVR) + (1− µ(pt))(

1
2
+ δVR∞)

. (B.9)

Next, we argue that, in any REMAIN-friendly environment, δTM ∈ (δ∗, 1). δTM < 1 is

obvious. Since

δ∗ < δTM ⇔ 1

2(1− p̄)
<

1

1 + F (1
2
)(1− 2p̄)

⇔ F (1
2
)(1− 2p̄) < 1− 2p̄,

p̄ < 1
2

implies δ∗ < δTM .

Suppose that the environment is REMAIN-friendly and that δ > δTM . We argue in two

steps.

Step 1: The optimal policy is implementable. Since δ > δTM implies δ > δ∗, it is optimal to

never LEAVE (by Lemma 1). Thus, if the Markov strategy (λ(0, pt), λ(1, pt)) = (0, 0) is part of

an equilibrium, the optimal policy is implementable. This Markov strategy implies VR = VR∞

(by (B.8)) and µ(pt) = 0 for all pt (by (8)). It follows that, for all pt, an agent believes to

be pivotal between REMAIN for now and REMAIN FOREVER; that is, he compares 1
2
+ VR

with 1
2
+ VR∞. Because VR = VR∞, he is indifferent and λ(πi

t, pt) = 0 is for all πi
t and all pt
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optimal under pivotality considerations for the continuation values and the belief system that

it induces.

Step 2: No other policy is implementable. Assume to the contrary that there exists an

equilibrium that implements a non-optimal policy. Since the social planner strives to maximize

VR, VR < V ∗
R = 1

1−δ
1
2

must be true in such an equilibrium. Since it is optimal to never LEAVE,

any postponement of LEAVE is socially beneficial. This implies that VR ≥ VL. It follows that

0 + δVL < 1
2
+ δVR and 1

2
+ δVR < 1

2
+ δVR∞.

Hence, no matter in which event a LEAVE-loser believes to be pivotal, he has by (B.9) a

strict incentive to vote for REMAIN; that is, only λ(0, pt) = 0 is optimal under pivotality

considerations.

λ(0, pt) = 0 implies lt = ptλ(1, pt) ≤ pt. For given pt, we distinguish three cases and argue

that, in each case, the decision is not LEAVE. This yields a contradiction to a non-optimal

policy being implemented:

Case i: λ(1, pt) <
1
2pt

. Then, lt < 1
2

and, by (8), µ(pt) = 0. As this means that LEAVE-

winners compare 1
2
+ δVR with 1

2
+ δVR∞, only λ(1, pt) = 0 is optimal under pivotal voting by

our observation in the first paragraph of Step 2 and by (B.9). Hence, d(pt) = R∞.

Case ii: λ(1, pt) >
1
2pt

. Then, lt > 1
2

and only µ(pt) = 1 is by (8) consistent with the Markov

strategy. By (B.9), λ(1, pt) > 0 requires 1 + δVL ≥ 1
2
+ δVR. Because, for all pt < 1

2
, Case i

applies, we obtain the following lower bound on VR:

VR ≥ F (1
2
)VR∞ + (1− F (1

2
))VL.

Necessary for 1 + δVL ≥ 1
2
+ δVR is thus

1 + δVL ≥ 1
2
+ δ(F (1

2
)VR∞ + (1− F (1

2
))VL) ⇔ 1

2
≥ δF (1

2
)(VR∞ − VL)

⇔ 1
2
≥ δF (1

2
) 1
1−δ

(1
2
− p̄)

⇔ δ ≤ δTM .

As this violates our assumption that δ > δTM , Case ii cannot occur.
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Case iii: λ(1, pt) =
1
2pt

. Then, lt = 1
2

such that d(pt) = R.

Proof of Proposition 4

Suppose that δ < δ∗. By Lemma 1, a cutoff policy p∗ ∈ (1
2
, 1) is optimal. Consider two-sided

p∗-majority voting. We will argue that the Markov strategy

(λ(0, pt), λ(1, pt)) =

 (1−2pt
2−2pt

, 1) pt ≤ 1
2

(0, 1) pt >
1
2

(B.10)

together with some belief system constitutes an equilibrium. If each agent votes according to

this strategy, the mass of LEAVE-votes is lt = max{1
2
, pt}. It follows that, on the equilibrium

path, the decision is never R∞ and that LEAVE is chosen in the first period such that pt ≥ p∗.

That is, the optimal policy is implemented.

It remains to argue that there exists a belief system which is consistent with the Markov

strategy, and for which the Markov strategy is optimal. Consider a period t such that dt−1 = R.

We distinguish two cases:

Case 1: pt >
1
2
. Then, lt = pt and, by (8), only µ(pt) = 1 is consistent with the Markov

strategy (B.10). As this means than an agent believes to be pivotal for LEAVE reaching the p∗-

majority, he faces the same trade-off as under normal majority voting; i.e., he compares πi
t+δVL

with 1
2
+ δVR. Since the Markov strategy implies that future decisions are taken according to

the optimal policy, we obtain that δ(VR − VL) = δ(V ∗
R − V ∗

L ) = ∆∗. Since ∆∗ ∈ (0, 1
2
) for

p∗ ∈ (1
2
, 1), myopic voting is indeed optimal.

Case 2: pt ≤ 1
2
. Then, lt = 1

2
and, by (8), any µ(pt) ∈ [0, 1] is consistent with the Markov

strategy (B.10). By (B.9), it suffices to argue that there exists some µ(pt) ∈ [0, 1] such that a

LEAVE-loser is indifferent between voting for LEAVE and for REMAIN for the continuation

values the Markov strategy induces:

µ(pt)(0 + δVL) + (1− µ(pt))(
1
2
+ δVR)

= µ(pt)(
1
2
+ δVR) + (1− µ(pt))(

1
2
+ δVR∞).

Since the Markov strategy (B.10) implies that future decisions are taken according to the
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optimal policy, VR ≥ VL and VR ≥ VR∞ must be true because REMAIN has an option value

both relative to LEAVE and relative to REMAIN FOREVER. It follows that

0 + δVL < 1
2
+ δVR and 1

2
+ δVR ≥ 1

2
+ δVR∞.

Hence, there exists some µ(pt) ∈ [0, 1] such that the equality holds.

Proofs for Extension I

Derivation of the (1− κ)-quantile Agent’s Stage Payoff, π(1−κ)(pt)

Define

H(π|pt) ≡ Prob{πi
t ≤ π|pt} =


(1− α)− pt + 2αG(π) if π ∈ [0, 1)

1 if π = 1

.

We have then π(1−κ)(pt) = 1 if limπ→1H(π|pt) < 1 − κ and π(1−κ)(pt) = 0 if H(0|pt) > 1 − κ.

Otherwise, π(1−κ)(pt) is the unique solution π to the equation H(π|pt) = 1− κ. We get

π(1−κ)(pt) =


1 if pt > κ+ α

G−1(pt+α−κ
2α

) if κ− α ≤ pt ≤ κ+ α

0 if pt < κ− α

. (B.11)

Auxiliary Result for the Proof of Lemma 3

Lemma B.5. (a) If g is quasi-convex, then π ≤ G−1(π) for all π ∈ [1
2
, 1].

(b) If g is strictly quasi-concave, then g(1
2
) > 1.

Proof. (a) Quasi-convexity of g and symmetry of g around 1
2

imply that g is weakly increasing

on [1
2
, 1] which in turn implies that G is weakly convex on [1

2
, 1]. It follows from this together

with G(1
2
) = 1

2
and G(1) = 1 that, for all π ∈ [1

2
, 1], G(π) ≤ π and thus, π ≤ G−1(π).

(b) Strict quasi-concavity of g and symmetry of g around 1
2

imply that g is non-constant

and attains its maximum at 1
2
. As the maximum of a non-constant density with support [0, 1]

must be larger than 1, we obtain g(1
2
) > 1.
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Proof of Lemma 3

(a) Suppose that g is quasi-convex. If pt ∈ (1
2
+α, 1−α], (A.1) holds because π(1/2)(pt) = 1.

It remains to consider the case with pt ∈ (1
2
,min{1

2
+ α, 1 − α}]. We need to show that

G−1(pt+α−1/2
2α

) > pt. By Lemma B.5 (a), pt+α−1/2
2α

> pt is sufficient for this. Since this inequality

simplifies to pt >
1
2
, the desired result follows.

(b) Suppose that g is strictly quasi-concave. (B.11) and symmetry of g around 1
2

together

imply G−1(1
2
) = 1

2
such that π(1/2)(1

2
) = 1

2
. It suffices thus to show that there exists α̂ ∈ (0, 1

2
)

such that for all α ∈ (α̂, 1
2
), d

dptπ
(1/2)(1

2
) < 1. We have

d
dpt

π(1/2)(1
2
) =

1

2α

1

g(G−1(1/2+α−1/2
2α

))
=

1

2α

1

g(1
2
)
.

By Lemma B.5 (b), g(1
2
) > 1 and the result follows.

Proofs for Extension II

Proof of Lemma 4

By subtracting the first equation in (A.3) from the second equation, multiplying both sides

of the resulting equation by δ, and using the definition of ∆(πi
t−1, pt−1), we obtain

∆(πi
t−1, pt−1) = δE[1d(pt)=R(

1
2
− πi

t +∆(πi
t, pt))|πi

t−1, pt−1]

= δE[1d(pt)=R(
1
2
− qπi

t−1
(pt−1, pt) + qπi

t−1
(pt−1, pt)∆(1, pt)

+(1− qπi
t−1

(pt−1, pt))∆(0, pt))|πi
t−1, pt−1]. (B.12)

The future advantage of REMAIN induced by the same policy in the base model is deter-

mined by the equation

∆ = δE[1d(pt)=R(
1
2
− pt +∆)]. (B.13)

Define

∆̄(pt−1) ≡ pt−1∆(1, pt−1) + (1− pt−1)∆(0, pt−1) (B.14)

= δE[1d(pt)=R(
1
2
− pt + pt∆(1, pt) + (1− pt)∆(0, pt))|pt−1]

= δE[1d(pt)=R(
1
2
− pt + pt∆(1, pt) + (1− pt)∆(0, pt))]

= δE[1d(pt)=R(
1
2
− pt + ∆̄(pt))].

43



The equality in the second line follows from using the definition of ∆(πi
t−1, pt−1) in (B.12)

and from Assumption 1. Since the right-hand side does not depend on pt−1, ∆̄(pt−1) must be

constant, say ∆̄. Since ∆̄(pt−1) = ∆̄ implies that ∆̄ is characterized through the same equation

as ∆, i.e., through (B.13), we have shown that ∆̄(pt−1) = ∆.

It follows from (B.14) with ∆̄(pt−1) = ∆ that, for each pt−1, either ∆(0, pt−1) ≤ ∆ ≤

∆(1, pt−1) or ∆(0, pt−1) ≥ ∆ ≥ ∆(1, pt−1). We conclude the proof of this Lemma by showing

that ∆(0, pt−1) ≥ ∆(1, pt−1) for any pt−1.

We have

∆(0, pt−1)−∆(1, pt−1)

(B.12)
= δE[1d(pt)=R(

1
2
− q0(pt−1, pt) + q0(pt−1, pt)∆(1, pt) + (1− q0(pt−1, pt))∆(0, pt))|pt−1]

−δE[1d(pt)=R(
1
2
− q1(pt−1, pt) + q1(pt−1, pt)∆(1, pt) + (1− q1(pt−1, pt))∆(0, pt))|pt−1]

= δE[1d(pt)=R(q1(pt−1, pt)− q0(pt−1, pt))|pt−1]

+δE[1d(pt)=R(q1(pt−1, pt)− q0(pt−1, pt))(∆(0, pt)−∆(1, pt))|pt−1]. (B.15)

Since Assumption 2 implies E[1d(pt)=R(q1(pt−1, pt)− q0(pt−1, pt))] ≥ 0, we obtain

∆(0, pt−1)−∆(1, pt−1)

≥ δE[1d(pt)=R(q1(pt−1, pt)− q0(pt−1, pt))(∆(0, pt)−∆(1, pt))|pt−1]. (B.16)

Substituting t for t + 1 in (B.16), we obtain a lower bound on ∆(0, pt)−∆(1, pt) that can

be used in (B.16) to obtain an even smaller lower bound on ∆(0, pt−1)−∆(1, pt−1). We obtain

∆(0, pt−1)−∆(1, pt−1)

≥ δ2E[

(
t+1∏
t′=t

1d(pt′ )=R(q1(pt′−1, pt′)− q0(pt′−1, pt′))

)
(∆(0, pt+1)−∆(1, pt+1))|pt−1].

By repeatedly applying this logic r times, the lower bound becomes

∆(0, pt−1)−∆(1, pt−1)

≥ δr+1E[

(
t+r∏
t′=t

1d(pt′ )=R(q1(pt′−1, pt′)− q0(pt′−1, pt′))

)
(∆(0, pt+r)−∆(1, pt+r))|pt−1].
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Since, in each single period, the stage payoff from LEAVE is by at most 1
2

different from

the stage payoff from REMAIN, ∆(0, pt) − ∆(1, pt) is bounded for given δ. Specifically, we

have |∆(0, pt) −∆(1, pt)| ≤ 1
1−δ

. This implies that the lower bound on ∆(0, pt−1) −∆(1, pt−1)

converges to 0 as r → ∞. Hence, ∆(0, pt−1)−∆(1, pt−1) cannot be negative.
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